
Smoldyn User’s Manual
Version 2.73

Steve Andrews

©February, 2024

Contents

I. Getting Started 7

1. Introduction 9
1.1. Installing Smoldyn . 9
1.2. Getting Started . 14
1.3. Conclusions . 20

II. Smoldyn Components 23

2. The Configuration File 25
2.1. Runtime flags . 25
2.2. Configuration file syntax . 25
2.3. Variables and formulas . 26
2.4. Statements about the configuration file . 26
2.5. Text substitution macros . 26
2.6. Running multiple simulations using scripts . 27
2.7. Summary . 27

3. Space and time 29
3.1. Space . 29
3.2. Time . 30
3.3. Summary of statements that define space and time 30
3.4. Technical discussion of time steps . 31

4. Molecules 33
4.1. About molecules . 33
4.2. Diffusion . 33
4.3. Drift . 35
4.4. Molecule lists . 36
4.5. Statements about molecules . 37
4.6. Wildcards . 37
4.7. Species groups . 38

5. Graphics 39
5.1. Graphics display . 39
5.2. Drawing the system . 40
5.3. Colors . 40
5.4. Text display to the graphics window . 40
5.5. TIFF files and movies . 41
5.6. Summary of basic graphics statements . 41
5.7. Better graphics . 42

3

Contents

6. Runtime commands 43
6.1. Command basics . 43

6.2. Output format and files . 44

6.3. Specific commands . 45

6.4. Summary of statements about commands . 46

7. Surfaces 47
7.1. Surface basics . 47

7.2. Defining surfaces . 47

7.3. Defining surface panels . 48

7.4. Jumping surfaces . 50

7.5. Membrane-bound molecules . 50

7.6. Smoldyn bugs . 52

7.7. Statements about surfaces . 52

7.8. Rates of surface interactions . 52

7.9. Simulating effective unbounded diffusion . 54

8. Reactions 55
8.1. Reaction basics . 55

8.2. Defining reactions . 56

8.3. Statements about reactions . 57

8.4. Reactions with a block format . 58

8.5. Zeroth order reactions . 58

8.6. Unimolecular reactions . 59

8.7. Bimolecular reactions . 60

8.8. Reactions with identical reactants . 61

8.9. Diffusion-limited reactions . 62

8.10. Reversible reactions . 63

8.11. Multi-step reactions . 63

8.12. Reaction networks . 64

8.13. Conformational spread reactions . 65

8.14. Excluded volume reactions . 67

8.15. Binding and unbinding radii . 69

8.16. Bimolecular reactions and surfaces . 72

9. Compartments 75
9.1. Compartment basics . 75

9.2. Defining compartments . 75

9.3. Compartments and efficiency . 77

9.4. Statements about compartments . 77

10.Simulation settings 79
10.1. Simulation settings basics . 79

10.2. Random number seed . 79

10.3. Virtual boxes . 79

10.4. Surface-bound molecule settings . 80

10.5. Statements for simulation settings . 80

4

Contents

11.Ports 81
11.1. Port basics . 81

11.2. Defining ports . 81

11.3. Statements about ports . 81

11.4. Porting rate . 81

12.Rule-based modeling with BioNetGen 83
12.1. Rule-based modeling basics . 83

12.2. Writing rules in BNGL . 84

12.3. Writing the Smoldyn file to read the rules or generated network 85

12.4. Creating species groups in BioNetGen . 87

12.5. Statements for rule-based modeling . 87

12.6. A ligand-receptor-messenger system in BioNetGen 87

12.7. Network expansion with monomer modifications . 89

12.8. Network expansion with surface-bound states . 90

12.9. Short names, diffusion coefficients, and graphical parameters 90

12.10.Surface-molecule interactions . 91

13.Filaments 93
13.1. Filament heirarchy . 93

13.2. Defining filaments . 93

14.Hybrid simulation 95
14.1. Hybrid simulation basics . 95

14.2. Defining lattices . 96

14.3. Lattice output . 97

14.4. Statements about lattices . 97

15.Python and C/C++ interfaces 99
15.1. Installing . 99

15.2. Current limitations . 100

15.3. Python API example . 100

15.4. User and low-level Python APIs . 103

15.5. Creating new simulations . 103

15.6. Callback functions . 104

15.7. Use with C/C++ . 105

III. Reference 111

16.Math operations and functions 113

17.Quick function guide 115

18.Statements 121
18.1. Statements about the configuration file . 121

18.2. Statements about variables . 122

18.3. Statements about space and time . 122

18.4. Statements about molecules . 123

5

Contents

18.5. Statements about graphics . 125
18.6. Statements about run-time commands . 127
18.7. Statements about surfaces . 129
18.8. Statements about compartments . 133
18.9. Statements about reactions . 134
18.10.Statements about ports . 137
18.11.Statements for rule-based modeling with BioNetGen 138
18.12.Statements about filaments . 139
18.13.Statements about lattices . 142
18.14.Statements for simulation settings . 144

19.Runtime commands 147
19.1. Simulation control commands . 147
19.2. File manipulation commands . 148
19.3. Conditional commands . 148
19.4. System observation commands . 149
19.5. System manipulation commands . 156

20.C/C++ and Python APIs 163
20.1. Enumerations . 163
20.2. Miscellaneous . 165
20.3. Errors . 165
20.4. Sim structure . 166
20.5. Read configuration file . 168
20.6. Simulation settings . 169
20.7. Molecules . 170
20.8. Graphics . 174
20.9. Runtime commands . 176
20.10.Surfaces . 178
20.11.Reactions . 183
20.12.Compartments . 185
20.13.Ports . 186
20.14.Lattices . 187

21.Copyright and citation 189

22.Acknowlegements 195

6

Part I.

Getting Started

7

1. Introduction

Smoldyn is a computer program for simulating chemical processes on a microscopic size scale.
The size scale is sufficiently detailed that all molecules of interest are simulated individually, while
solvent molecules and any molecules that are not of immediate interest are only treated implicitly.
In the simulation, molecules diffuse, react, are confined by surfaces, and bind to membranes, much
as they would in a real chemical system.

In Smoldyn, each molecule is represented by a point in 1-, 2-, or 3-dimensional continuous space.
Simulated molecules do not have spatial orientations or momenta. They can have volumes if desired,
but do not need to. Because of these approximations, simulations are typically accurate on spatial
scales down to about a nanometer and timescales down to about a microsecond. This accuracy
comes at the cost of high computational intensity. For systems that are larger than tens of microns,
or dynamics that unfold over tens of minutes, simulation methods that are more computationally
efficient but less accurate are likely to be preferable.

The input to Smoldyn is a plain text configuration file. This file specifies all of the details of the
system, such as the shapes and positions of membranes, the initial types and locations of molecules,
diffusion coefficients, instructions for the graphical output, and so on. Smoldyn reads this file, prints
out some information about the system so the user can verify that the file was interpreted correctly,
and then runs the simulation. As the simulation runs, the state of the system can be displayed
to a graphics window to allow the user to watch what is happening, or to capture the simulation
result in a movie. Also, it is possible to enter commands in the configuration file that are executed
at runtime, and which output quantitative results from the simulation to text files. Smoldyn quits
when the simulation is complete.

About this User’s Manual

Do not read the manual from end to end. New users should read the Installation chapter as needed
and the Getting Started chapter. The last half of the manual is a reference section which lists all
statements and commands. The first portions of the other chapters provide helpful introductions
on additional topics. Later portions of those chapters present advanced material that you may
want to learn if you continue with Smoldyn.

1.1. Installing Smoldyn

Macintosh

1. At the Smoldyn download webpage, http://www.smoldyn.org/download.html, download
the latest Mac version.

2. Open your Terminal application, which is in your Applications/Utilities directory.

3. Change
directories to this download directory (probably type cd Desktop/smoldyn-2.xx-mac, or
something similar).

9

http://www.smoldyn.org/download.html

1. Introduction

4. Type sudo ./install.sh and enter your computer password when prompted. If you are
asked whether you want the installer to update your environment PATH variable, you should
generally say yes (enter y). This will add the directory /usr/local/bin to the list of places
where your computer will look for executable files, which means that it will find Smoldyn
correctly.

5. Test Smoldyn by typing smoldyn examples/S1 intro/bounce3.txt. If your computer
refuses to open it because it’s from an unknown developer, go to System Preferences (Apple
menu), Security & Privacy, General, and at the bottom you’ll see “Allow apps downloaded
from:” and “‘smoldyn’ was blocked because it was from an unidentified developer”. Click
“Allow anyway”.

More advice

• Macs use the zsh terminal shell by default, which is non-standard. To use good old-fashioned
bash, enter chsh -s /bin/bash. To switch back, enter chsh -s /bin/zsh.

• The default Python version is 2.7, which then comes with a warning saying that it’s obsolete,
which it is. The easy way to change to Python 3 is to enter python3 and then let your
computer download and install developer tools.

If installation failed

• Type smoldyn -V. This should run Smoldyn just enough to print out the version number. If
this works, then you have Smoldyn and it runs, but Smoldyn wasn’t finding the input file.

• Did the Smoldyn software get installed to the correct place? Check by typing ls

/usr/local/bin and see if smoldyn is in the directory.

• Does your computer know where to look for programs? Type echo $PATH to get a list of
colon-separated places where the computer looks. If /usr/local/bin isn’t in this list, then you
need to add it to your profile file (Google “edit path mac”).

• Is your system allowing you to run the code? If you’re told that permission was denied for
running smoldyn, then your computer might not have realized that Smoldyn is an executable
program. Enter sudo chmod +x /usr/local/bin/smoldyn.

• E-mail support@smoldyn.org for assistance.

Windows

1. At the Smoldyn download webpage, http://www.smoldyn.org/download.html, download
the latest Windows version. Your browser may warn you about the dangers of downloading
software, but this file is almost certainly okay; I compiled it on a clean Windows computer
using only files that I wrote myself and a few widely used libraries, so it is extremely unlikely
that there is a virus in it.

If you have administrator privileges

2. Extract the zip file. Do this by right-clicking on the icon of the downloaded file and selecting
extract to smoldyn-2.xx-windows. This should extract the file to your home directory.

10

support@smoldyn.org
http://www.smoldyn.org/download.html

1.1. Installing Smoldyn

3. Open a Command Prompt application as administrator. You can find the command prompt
by searching for it with the Start menu. Rather than left-clicking on the Command prompt
result that appears, right click on it, and select “run as administrator”. The computer emits
scary warnings, but reply yes anyhow.

4. Change directories to the Smoldyn directory (probably type cd

Downloads/smoldyn-2.xx-windows or something similar).

5. Type install. This will copy the Smoldyn files to a new Smoldyn subdirectory of your “C:
Program Files” directory. This will also update your %PATH% environment variable so your
computer knows where to find the software. Note that it is possible for the installer to corrupt
your PATH variable if it was unusually long (about 1024 characters). If this happens, revert
the variable using the file PATH old.txt, where the installer saves the existing PATH variable
before modifying it.

6. Exit the command prompt as administrator, and start a new command prompt, not as
administrator.

7. Test Smoldyn by typing smoldyn examples/S1 intro/bounce3.txt.

If you don’t have administrator privileges

2. Extract the zip file to the desired location. Do this by right-clicking on the icon of the
downloaded file and selecting “extract file...” and then enter the directory where you want
the file.

3. Open a Command Prompt application. You can find it by searching for it with the Start
menu.

4. In the Command Prompt, change directories to the Smoldyn download (use cd to change
directories, and dir to list directory contents).

5. Test Smoldyn by typing smoldyn examples/S1 intro/bounce3.txt. Smoldyn should work
just as well as if it was installed, but you will need to be in this directory to run it.

If installation failed

• If you get errors due to missing dll files, look in the dll directory in the Smoldyn download. If
the needed dll file is in there, then simply copy it to the same directory where the smoldyn.exe
file is. E-mail support@smoldyn.org for assistance.

Compiling on Macintosh

1. You will need a C compiler and the Make utility. To check if you have them, simply type gcc

at a shell prompt. If it says “command not found”, then you need to get it. To get it, go
to http://developer.apple.com/xcode and click on the “view in Mac App store button” to be
taken to the Xcode site in the Mac App store. Then, click on the “Free” button, register for
a free Apple Developer Connection account if you don’t have one already, and click on the
same button, which is now called “Install App”. This will install XCode. However, it still
won’t work properly. Next, start XCode and go to the “Preferences...” menu item, click on
“downloads” and install the “Command line tools”.

11

support@smoldyn.org

1. Introduction

2. OpenGL should already be installed on your computer. To check, type ls

/System/Library/Frameworks and you should see folders called GLUT.framework and
OpenGL.framework. If they aren’t there, then you’ll need to get them.

3. You will need the CMake configuration software. To see if you already have it, type cmake;
this will produce the help information if you have it, or an error message if not. If you don’t
have it, you need to download and install it.

4. Libtiff is a library that Smoldyn uses for saving tiff format images, which you probably do
not have. It is not required for Smoldyn to run, but it necessary to save images. One way
to install Libtiff is to download it from http://www.libtiff.org, uncompress it, and install
it. To install it, start a terminal window, change to the libtiff directory, and follow the
README instructions: type ./configure, then make, then sudo make install and your
password. This will install libtiff header files to /usr/local/include and libtiff library archives
in /usr/local/lib.

Another method (but one which I think is harder) is to use MacPorts or Fink. For
MacPorts, type port search libtiff. If you get the error message “port: command not
found”, then you don’t have MacPorts. If this is the case, then you can get MacPorts
from www.macports.org and try again. When the command works, it should list a few
packages, one of which is called “tiff @3.8.2 (graphics)”, or something very similar. Install
it by typing sudo port install tiff, followed by your password. This will install libtiff
to /opt/local/var/macports/software/. This is great, except that the Smoldyn build system
prefers for libtiff to be in /usr/local/lib. The solution is to set LIBTIFF CFLAGS and
LIBTIFF LDFLAGS manually when you type ./configure for Smoldyn. This will override
Smoldyn’s search for the libraries and will link them in properly. For Fink, exactly the
same advice applies, except that Fink installs libraries to /sw. For example, if libtiff
is installed to /sw/local, then configure with: LIBTIFF CFLAGS="-I/sw/local/include"

LIBTIFF LDFLAGS="-L/sw/local/lib -ltiff" ./configure.

5. Install Smoldyn by changing to the “cmake” directory. Then type cmake .., then make,
and then sudo make install, and finally your password. Some custom installation options
can be selected with the cmake .. line if you want them; they are listed below in the
sections on installing to a custom location and on installation problems, and also in the
Smoldyn programmers manual. To clean up temporary files, which is essential if you want
to try building a second time, first enter pwd and confirm that you are still in the “cmake/”
directory (don’t continue if not!). Then, type rm -r * to clear out all prior build stuff.

6. Test Smoldyn.

(a) Type smoldyn -V to just print out the Smoldyn version number. If it doesn’t work,
then the most likely problem is that your system is not set up to run programs that are in
your /usr/local/bin directory, which is where Smoldyn is installed by default. To fix this
temporarily, type export PATH=$PATH:/usr/local/bin; to fix it permanently, although it
will only take effect after you open a new terminal window, use emacs or some other editor
to edit the file /.profile and add the line export PATH=$PATH:/usr/local/bin.

(b) Type smoldyn examples/S8 reactions/lotvolt/lotvolt.txt to run a Lotka-Volterra
simulation. If a graphics window doesn’t appear, then the OpenGL linking somehow failed.
Otherwise, press “T” (upper-case) at some point during the simulation to save a tiff-format
image of the graphical display. If it works, it will be saved to the current directory as
OpenGL001.tif; if not, then the libtiff linking somehow failed.

12

1.1. Installing Smoldyn

Compiling options

Various building options are possible with the CMake build system, of which the most important
are as follows. In all cases, append these to the cmake .. command.

-DOPTION STATIC=ON Build using static libraries
-DCMAKE BUILD TYPE=... Choose CMake build type
options are: None, Debug, Release (default), RelWithDebInfo, and MinSizeRel
-DOPTION USE OPENGL=OFF Build without graphics support
-DOPTION USE LIBTIFF=OFF Build without LibTiff support
-DOPTION USE ZLIB=OFF Build without ZLib support
-OPTION TARGET SMOLDYN=OFF Don’t build stand-alone Smoldyn program
-DOPTION TARGET LIBSMOLDYN=ON Build LibSmoldyn library
-DOPTION PYTHON=ON Build Python API
-DOPTION NSV=ON Build with next subvolume support
-DOPTION VTK=ON Build with VTK output support

By default, the Smoldyn build system installs Smoldyn to either the /usr or the /usr/local
directories, depending on your system. These are the standard places for programs like Smoldyn,
but you will need root access for the installation (typically only system administrators have the
necessary su or sudo access to install to these locations). If you use a computer on a shared
computer, you may not have this access. If this is the case, then you will have to pick a different
install directory, such as /usr. There are standard options to configure Smoldyn to install here,
for the CMake build system

The drawback to installing in a non-standard location is that your system may not find Smoldyn
when you try to run it. To solve this, you need to add the directory “ /usr”, or wherever you
installed Smoldyn, to your PATH variable. This is explained above in instruction 5a for the regular
Macintosh installation, except that here you would add export PATH=$PATH:∼/usr/bin.

Compiling on a UNIX/Linux system

For the most part, installing on a UNIX or Linux system is the same as for Macintosh, described
above. Following are a few Linux-specific notes.

To download Smoldyn from a command line, type wget

http://www.smoldyn.org/smoldyn-2.xx.tar.gz, where the xx is the current version number.
Then unpack it with tar xzvf smoldyn-2.xx.tar.gz.

For a full installation, you will need OpenGL and Libtiff. I don’t know how to install them for all
systems, but it turned out to be easy for my Fedora release 7. I already had OpenGL, but not the
OpenGL glut library nor Libtiff. To install them, I entered sudo yum install freeglut-devel

and sudo yum install libtiff, respectively, along with my password.

Ubuntu systems are slightly more finicky than others. First, you may need to install several
things as follows. Install a C++ compiler with sudo apt-get install g++, install a Python
header file with sudo apt-get install python-dev, install the OpenGL glut library with sudo

apt-get install freeglut3-dev, and install the libtiff library with sudo apt-get install

libtiff4-dev.

13

1. Introduction

Running Smoldyn remotely

It can be helpful to have Smoldyn installed on computer A and run from computer B. Running
Smoldyn without graphics is trivial. Just ssh into computer A as normal, and run Smoldyn with
smoldyn filename.txt -t, where the -t flag implies text-only operation. If you want graphics
though, then log in with ssh -Y me@compA/directory and run Smoldyn as normal. Graphics will
be slow but should be functional.

Alternatively, I’ve found the free software TeamViewer to be a convenient method for working
on computers remotely. An advantage of this method is that it works even if there are institutional
firewalls that prohibit remote computer access.

1.2. Getting Started

Smoldyn should be run from a command line interface. For Macs, use the application called
Terminal, which you can find by searching for it, or it should be in your /Applications/Utilities
directory. For Windows, use the application called Command Prompt, which is easiest to find by
searching for it using the Start menu.

Open Smoldyn files in a text editor. For Macs, TextEdit works well, except that it does not let
you start with a new file and then save it as plain text. Instead, it only saves new files as rich text
format. The solution is to copy an example file first, rename it to your new file name, and then
edit it. You can also use Microsoft Word and save as plain text. For Windows, NotePad does not
work well because it doesn’t display line breaks correctly. Instead, use Microsoft Word and save as
plain text.

From a command line, run Smoldyn by entering smoldyn followed by the name of your input file.
For example, if you are in the Smoldyn parent directory, enter smoldyn examples/template.txt

to run that file. You should see output that looks like this:

Figure 1.1.: Graphical output of template.txt.

This file shows enzymatic catalysis, in which green dots are substrate, blue dots are product,
enzyme is dark red, and enzyme-substrate complexes are orange. The substrate and product
molecules are “solution phase”, while the enzyme and enzyme-substrate complexes are “surface-
bound” (e.g. the enzyme is an integral membrane protein).

Note that you can zoom in or out with the “=” and “-” keys and you can pan with shift-arrow
keys (arrow keys enable rotating with 3D simulations, but not here because this is a 2D simulation).
Pressing “0” returns to the default view. You can also press shift-“T” to take a snapshot of the
output, the space bar to pause the simulation, or shift-“Q” to quit the simulation.

14

1.2. Getting Started

Here is the complete Smoldyn input file for the template.txt simulation. This file includes most
of Smoldyn’s core features.

Smoldyn configuration file template.

List basic file information here , including your name , the development date ,

what this file does , the model name if you want one , the file version ,

distribution

terms , etc. Also , importantly , list the units used in this file , e.g. microns

and

milliseconds. This template file is here to be edited. There is no need to

maintain

any of the current text , or to keep any references to Steve Andrews , or the

history

of this file.

Enzymatic reactions on a surface , by Steve Andrews , October 2009.

This model is in the public domain. Units are microns and seconds.

The model was published in Andrews (2012) Methods for Molecular Biology ,

804:519.

It executes a Michaelis -Menten reaction within and on the surface of a 2D circle

.

Model parameters

define K_FWD 0.001 # substrate -enzyme association reaction rate

define K_BACK 1 # complex dissociation reaction rate

define K_PROD 1 # complex reaction rate to product

#define TEXTOUTPUT # uncomment this line for text output

Graphical output

graphics opengl_good # level of graphics quality (or none)

frame_thickness 0 # turns off display of the system boundaries

System space and time definitions

dim 2 # 2D system

boundaries x -1 1 # outermost system boundaries on x axis

boundaries y -1 1 # outermost system boundaries on y axis

time_start 0 # simulation starting time

time_stop 10 # simulation stopping time

time_step 0.01 # simulation time step

Molecular species and their properties

species S E ES P # species. S=substrate , E=enzyme , ES=complex , P=product

difc S 3 # diffusion coefficients

difc P 3

color S(all) green # colors for graphical output

color E(all) darkred

color ES(all) orange

color P(all) darkblue

display_size all(all) 0.02 # display sizes for graphical output

display_size E(all) 0.03

display_size ES(all) 0.03

Surfaces in the system and their properties

start_surface membrane # start definition of surface

action all both reflect # all molecules reflect at both surface faces

color both black # surface color for graphical output

thickness 1 # surface display thickness for graphics

panel sphere 0 0 1 50 # definition of the surface panel

15

1. Introduction

end_surface

Compartment definitions

start_compartment inside # the area within the circle is a compartment

surface membrane # a surface that defines the compartmet bounds

point 0 0 # a point that is within the compartment

end_compartment

Chemical reactions

reaction fwd E(front) + S(bsoln) -> ES(front) K_FWD # association reaction

reaction back ES(front) -> E(front) + S(bsoln) K_BACK # dissociation reaction

product_placement back pgemmax 0.2 # for reversible reactions

reaction prod ES(front) -> E(front) + P(bsoln) K_PROD # product formation reaction

Place molecules for initial condition

compartment_mol 500 S inside # puts 500 S molecules in the compartment

surface_mol 100 E(front) membrane all all # puts 100 E molecules on surface

Output and other run -time commands

text_display time S E(front) ES(front) P # displays species counts to graphics

ifdefine TEXTOUTPUT # only run this if needed

output_files templateout.txt # file names for text output

cmd B molcountheader templateout.txt # text output run at beginning

cmd N 10 molcount templateout.txt # text output run every 10 time steps

endif

end_file # end of this file

Comments

All text after a “#” character is a comment and is ignored by Smoldyn. In these comments, it is
good practice to list basic information about the model such as what it represents, the model units,
who wrote the file, and distribution terms. This particular file has comments on almost every line
in order to explain what’s happening, but this is typically more annoying than useful.

Measurement units

Notably absent from input file are any measurement units. Instead, you need to choose a single set
of units and to then use these throughout the file. For example, cgs units (centimeter-gram-second)
and mks units (meter-kilogram-second) are two standard unit systems. These are too large-scale to
be convenient for most Smoldyn simulations, so micron-second and nanometer-microsecond tend to
be preferable. The following table lists reasonably typical values for different processes in several
different unit systems.

Diffusion Unimolec. Bimolecular Adsorption
Concentration coefficient reactions reactions rates

Typical value 10 µM 10 µm2s−1 1 s−1 105 M1s−1 1 µm s−1

mks 6 · 1021 m−3 10−11 m2s−1 1 s−1 1.7 · 10−22 m3s−1 10−6 m s−1

cgs 6 · 1015 cm−3 10−7 cm2s−1 1 s−1 1.7 · 10−16 cm3s−1 10−4 cm s−1

µm-ms 6000 µm−3 10−2 µm2ms−1 10−3 ms−1 1.7 · 10−7 µm3ms−1 10−3 µm ms−1

µm-s 6000 µm−3 10 µm2s−1 1 s−1 1.7 · 10−4 µm3s−1 1 µm s−1

nm-ms 6 · 10−6 nm−3 104 nm2ms−1 10−3 ms−1 170 nm3ms−1 1 nm ms−1

16

1.2. Getting Started

nm-µs 6 · 10−6 nm−3 10 nm2µs−1 10−6 µs−1 0.17 nm3µs−1 10−3 nm µs−1

px-ms 6 · 10−3 px−3 100 px2ms−1 10−3 ms−1 0.17 px3ms−1 0.1 px ms−1

A pixel, abbreviated px, is defined as a length of 10 nm. In the concentration column, “6” is
short for 6.022045. In the bimolecular reactions column, 1.7 is short for 1.660565.

Model parameters

It is easier to read and edit Smoldyn files if the model parameters that you might want to vary
are not hard-coded into the model, but are collected at the top of the file in a collection of define
statements. These statements instruct Smoldyn to perform simple text replacement, replacing
every subsequent instance of the matching text with the following substitution text. The statement
define K FWD 0.001, for example, tells Smoldyn to replace any subsequent K FWD text with 0.001;
in this case, this is a reaction rate constant. The substitution text can be a number, multiple
numbers, a string, or even nothing at all.

Graphical output

Graphical output can be displayed with several levels of quality. At the bottom end is no output
at all, achieved with the graphics none statement or by using a -t flag on the command line (e.g.
smoldyn template.txt -t). Next the graphics opengl level produces crude graphics, graphics
opengl good is passable, and opengl better is reasonably good. Improving the graphics quality
slows simulations down, so a good approach is to use the plain opengl level for model development,
no graphics when generating simulation results, and opengl better when preparing publication
figures.

As used here, the framethickness statement tells Smoldyn to not show a frame around the entire
simulation volume. There are also other statements for controlling the background color, the frame
display, etc.

Space and time

Smoldyn can run simulations in 1, 2, or 3 dimensions. Here, the dim 2 statement says that this is a
2D simulation. The following two boundaries statements define the system volume, showing that
it extends from -1 to 1 on the x axis, and then the same on the y axis. Smoldyn still tracks any
molecules beyond these boundaries but it becomes less efficient if there are substantial dynamics
there.

Simulations use fixed time steps. They start at the time given with time start, stop at the time
given with time stop and have steps with the size given with time step. For typical simulations of
subcellular processes, 10 ms is often a reasonable time step. Longer time steps make the simulation
run faster and shorter time steps produce more accurate results. Before starting a long series of
simulations, it is good practice to run several tests first to ensure that the time step is short enough
to produce results of the desired accuracy but also long enough for adequate efficiency.

Molecules

All of the chemical species in the simulation need to be declared with a species statement before
they can be used in the simulation (except when using rule-based modeling, as explained later on).

The following difc, color, and display size statements define the diffusion coefficients,
graphical display colors, and graphical display sizes for these different species. These parameters

17

1. Introduction

can vary for different molecule states, meaning whether the molecule is in solution or bound to
a surface; the latter case, it can be bound to a surface in any of the “front”, “back”, “up”, or
“down” states. If no molecule state is listed, such as in the statement difc S 3, this applies to
only the solution state; if one of these substrate molecules were to bind to a surface, it would not
diffuse because the surface-bound diffusion coefficients are all still equal to 0. For convenience,
these species parameters can be defined for all of the states at once by using “all” as the state, such
as in the statement color S(all) green.

The behavior of the display size statement depends on the graphical output style. For the
“opengl” graphics level, the display size value is in pixels. Here, numbers from 2 to 4 are typically
good choices. For the two better graphics options, the display size value is the radius with which
the molecule is drawn, using the same units as elsewhere in the input file.

Surfaces

Smoldyn surfaces are infinitesimally thin structures that can be used to represent cell membranes,
obstructions, system boundaries, or other things. They are 2D structures in 3D simulations, or 1D
lines or curves in 2D simulations (or 0D points in 1D simulations). Each surface has a “front” and
a “back” face, so molecules can interact differently with the two sides of a surface. Each surface
is composed of one or more “panels”, where each panels can be a rectangle, triangle, sphere,
hemisphere, cylinder, or a disk. Surfaces can be disjoint, with separate non-connected portions.
However, all portions of a given surface type are displayed in the same way and interact with
molecules in the same way.

Surfaces get defined in “surface blocks,” which start with start surface and the surface name,
and end with end surface. Within the surface block, define molecule interactions with this surface
using the action or rate statements. In this case, the statement action all both reflect

states that molecules of all species should reflect off of this surface upon collision with either of
the two faces. Other action options are absorb and transmit, for absorption by the surface, and
transmission through the surface, respectively. Use the rate statement, which is not used in this
file, for adsorption, desorption, or partial transmission through a surface.

Define surface graphics using the color and thickness statements. For 3D simulations, the polygon
statement is useful as well. With it, you can specify whether you want Smoldyn to draw just the
panel edges (typically the best choice), the entire panel face, or other options.

Surface panels definitions list each panel within the surface, including details about the panel
location, orientation, and display. The sequence of these parameters is hard to remember but is
described in the reference section of this manual. In this particular case, the statement panel

sphere 0 0 1 50 indicates that there should be a single spherical panel (actually a circle because
this is a 2D simulation) with its center at the coordinates (0,0). This circle should have radius of
1 and get drawn with 50 straight line segments. The front face of this circle is on the outside and
the back face is on the inside (this can be reversed by giving the radius with a negative value).

Compartments

Compartments are defined regions of space. They have essentially no role in the actual functioning
of the simulation but can be useful for placing and observing molecules. Their only simulation role
is that reactions can be qualified so that they only occur within specific compartments (which does
not happen in this input file).

As with surfaces, compartments are defined with blocks of text. Each block starts with
start compartment and the compartment name and ends with end compartment. Within the

18

1.2. Getting Started

block, list the surface or surfaces that form the boundaries to this compartment. Also, list at least
one “interior-defining point” (a set of coordinates) that is inside the compartment, so Smoldyn
knows which region is the inside and which is the outside. In this file, the circle is the compartment
bounding surface and a point at the center of the circle is the interior-defining point, so the
compartment represents the entire region within the circle.

Intuitively, the region of a compartment should be defined as everywhere in space to which
one can “walk” from the interior-defining point, without crossing any of the bounding surfaces.
However, for computational efficiency, Smoldyn uses a slightly different definition. In Smoldyn,
the region of a compartment is everywhere in space from which one can “see” the interior-defining
point using a straight line, without crossing any of the bounding surfaces. The difference between
the definitions is minimal is many cases, but can be important.

Reactions

Smoldyn only simulates elementary chemical reactions, such as unimolecular conversions and
bimolecular associations. Multistep reactions, like Michaelis-Menten reactions, need to be
constructed from their elementary reactions. List each reaction with the reaction statement
followed by: the reaction name, the reactants, a forward arrow, the products, and the reaction rate
constant.

Both reactant and product names can be followed by their states, listed in parentheses. These
states are essentially the same as those for the molecule diffusion coefficient and color statements.
The difference is that the solution state now subdivides into the two pseudo-states “fsoln” and
“bsoln”, where these indicate the solution state that is on the front or back, respectively, of the
relevant surface. In this file, for example, the reaction reaction fwd E(front) + S(bsoln) ->

ES(front) K FWD occurs between enzyme molecules that are surface-bound in their front state and
substrate molecules that are in the solution on the back side of the surface, meaning inside the
circle. The product is in the front state. If any state is not listed, Smoldyn assumes the “fsoln”
state (which is identical to the normal solution state).

To simulate unimolecular reactions, Smoldyn computes a reaction probability per time step.
Then, during the simulation, it reacts molecules of the given species with the computed probability
at each time step. For bimolecular reactions, Smoldyn combines the reaction rate constant, the
reactant diffusion coefficients, and the simulation time step to compute a “binding radius”. Larger
reaction rate constants lead to larger binding radii. During the simulation, if two reactants end
up within this binding radius of each other at the end of a time step, then Smoldyn performs the
reaction. It is also possible to specify that these reactions should only happen with some probability,
but this has very little benefit and so is not standard.

Reversible association/dissociation reactions have the additional complexity that the dissociation
product molecules start out in close proximity and so have a high probability of rapidly reacting with
each other in a so-called “geminate recombination”. Smoldyn controls the probability of geminate
recombinations, as opposed to products diffusing apart and not re-reacting, by initially separating
products by an “unbinding radius”. There is extremely little information in the scientific literature
about what the probability of geminate recombinations should be. As a result, Smoldyn sets this
probability to a maximum value of 0.2 by default. I chose this to balance the physical situation that
product molecules should be produced reasonably close together with the simulation practicality
that simulating geminate recombinations is computationally costly. Because this default value
is a very rough guess, Smoldyn emits a warning if it is not over-ridden by the input file. The
line product placement back pgemmax 0.2 prevents this warning by explicitly specifying that
the products of the reaction named back should be placed so that the maximum probability of

19

1. Introduction

geminate recombination is 0.2.

Similar reaction statements can be used for other molecule-molecule interactions, such as excluded
volume interactions and “conformational spread reactions”; in the latter case, the proximity of one
molecule affects the unimolecular reactions of another molecule.

Initial molecule placement

Place molecules in a simulation at the starting time using several mol statements. The plain
mol statement place molecules with random or specific positions in the simulation volume,
the compartment mol statement places molecules randomly in a given compartment, and the
surface mol statement places molecules with random or specific positions on a given surface.
In the last case, the molecule state needs to be specified. In the example file, the statement
surface mol 100 E(front) membrane all all instructs Smoldyn to place 100 enzyme molecules
onto the membrane surface in their front state, and that these molecules should be placed randomly
on all panel shapes and all panels of those shapes (which, in this case, was only one panel).

Output and Commands

Smoldyn supports a few general output statements. One of those is text display, which can
display the time and molecule counts to the graphical output window. Other output statements
can save TIFF files of the graphical output for recording snapshots of the simulation or complete
movies.

Commands are also useful for output, and for many other things. These run-time commands can
be thought of as a virtual experimenter who has permission to manipulate or observe the simulated
system in a wide variety of ways. Whereas the rest of the simulation is supposed to be physically
accurate, there are no such restrictions for commands.

If commands are used to output text to files, then Smoldyn needs to know what those files are
beforehand, which is the purpose of the output files statement. If those files already exist, then
Smoldyn checks with the user first before overwriting them. To suppress this warning, run Smoldyn
with a -w option on the command line (e.g. smoldyn template.txt -w).

Each command is entered with the same general format. They start with cmd, list the times
when the command should be executed, give the name of the specific command, and then give the
parameters of that command. For example, cmd B molcountheader templateout.txt indicates
that the command should be run before the simulation starts, the command is molcountheader

(which writes out a list of the species names), and the command should send its output to the file
templateout.txt. Similarly, cmd N 10 molcount templateout.txt indicates that the command
should be run every 10 time steps, the command is molcount (which counts the molecules of each
species), and the command should also send its output to templateout.txt.

Smoldyn supports quite a lot of commands, all of which are listed in the second half of the
reference section, at the back of this manual.

In this particular example file, note the use of the ifdefine TEXTOUTPUT statement. This is
used to easily turn on or turn off text output by commenting the define TEXTOUTPUT statement
at the top of the file.

1.3. Conclusions

This chapter has presented most of what you know to read and write Smoldyn input files. If you
have not done so already, I recommend stopping here and experimenting with Smoldyn. At a

20

1.3. Conclusions

minimum, it is helpful to edit and run some of the example files. Ideally, this is a good time to
copy an example file into your own directory and then completely rewrite it to create your own
model. As you go along, refer to the reference section for the details of how specific statements and
commands work. Also, read other chapters in this manual as questions arise.

If you start using Smoldyn for actual research, then it is important that you understand what
the software is actually doing. It is also helpful to learn about Smoldyn’s more advanced features,
how to automate simulations, and what makes simulations fast or slow. The rest of this manual
addresses these topics.

21

Part II.

Smoldyn Components

23

2. The Configuration File

This is the first of the chapters that focuses on a specific aspect of Smoldyn, in this case the
configuration or input file. These chapters are arranged with more elementary material first and
more advanced material afterwards.

2.1. Runtime flags

When starting Smoldyn from the command line, you can follow the filename with runtime flags, of
which the options are listed below. Any combination of flags may be used, and in any order. Flags
can be entered with a single hyphen and a single letter (possible with multiple letter codes entered
sequentially), or with a double hyphen and a word. Both possibilities are listed below.

Word Letter Result

--output -o suppress output: text output files are not opened
--params -p parameters only: simulation is not run
--quiet -q quiet: parameters are not displayed
--silent -s silent: no text output at all, even errors
--text -t text only: no graphics are displayed
--version -V display version number and quit
--verbose -v verbose: extra parameter information is displayed
--warnings -w suppress warnings: no warnings are shown
--define x = y set a text macro definition
--logfile file set output logging file for diagnostics and warnings

2.2. Configuration file syntax

Configuration files, such as bounce3.txt, are simple text files. The format is a series of text
lines, each of which needs to be less than 4096 characters long. On each line of input, the first
word describes which parameters are being set, while the rest of the line lists those parameters,
separated by spaces. If Smoldyn encounters a problem with a line, it displays an error message
and terminates. Possible problems include missing parameters, illegal parameter values, too many
parameters, unrecognized molecule, surface, or reaction names, unrecognized statements, or others.

In most cases, statements may be entered in any order, although some are required to be listed
after others. The required sequence is not always obvious, so it is usually easiest to just try what
seems most reasonable and then fix any errors that Smoldyn reports. Also, a few instructions can
only be entered once, whereas others can be entered multiple times. If a parameter is entered
more than once, the latter value overwrites the prior one. Parameters that are not defined in the
configuration file are assigned default values.

25

2. The Configuration File

2.3. Variables and formulas

Smoldyn supports numeric variables. Set them using the variable statement, such as variable x =

100 (spaces are required here). Also, essentially all numeric inputs can be entered with a formula.
For example, if you want a reaction rate to be two times the value of x, enter it as 2*x (spaces are
not allowed within formulas). Smoldyn’s formula processing supports arithmetic (+,-,*,/), modulo
division (%), powers (ˆ), and all levels of parentheses. It also supports many standard functions,
such as exp, sin, sqrt, etc.

2.4. Statements about the configuration file

A few statements control the reading of the configuration file, which are now described in more
detail. The first, shown in the first line of bounce3.txt, is a comment. A # symbol indicates that
the remainder of the line should be ignored, whether it is the whole line as it is in bounce3.txt or
just the end of the line. It is also possible to comment out entire blocks of the configuration file
using /* to start a block-comment and */ to end it. For these, the /* or */ symbol combinations
are each required to be at the beginning of configuration file lines. The remainder of those lines is
ignored, along with any lines between them.

It is possible to separate configuration files into multiple text files. This is done with the statement
read file, which simply instructs Smoldyn to continue reading from some other file until that one
ends with end file, which is followed by more reading of the original file. The read file statement
may be used anywhere in the configuration file, including within reaction definition and surface
definition blocks (described below) and within files that were themselves called with a read file

statement. The configuration file examples/S2 config/config.txt illustrates these statements.

2.5. Text substitution macros

You can use define statements to instruct Smoldyn to perform simple text substitution as it reads
in a configuration file. As a typical example, you might define your reaction rate constants at the
top of a configuration file using define statements (e.g. define k1 100) and then use the key later
on in the file rather than the actual number. This leads to a file that is more readable and easier to
modify. One definition is set automatically: FILEROOT is replaced by the current file name, without
path information and without any text that follows a “.”. Prior definitions are overwritten with
new ones without causing errors or warnings. These definitions have local scope, meaning that they
only lead to text replacement within the current configuration file, and not to those that it reads
with read file. To create a definition with broader scope, use define global; the scope of these
definitions is throughout the current configuration file, as well as any file or sub-file that is called by
the current file. A configuration file that calls the current one is not affected by a define global.
To remove a definition, or all definitions, use undefine.

define statements can also be used for conditional configuration file reading. In this case, a
definition is made as usual, although there is no need to specify any substitution text. Later in
the file, the ifdefine, else, and endif statements lead to reading of different portions of file,
depending on whether the definition was made or not. A variant of the ifdefine statement is the
ifundefine statement. These conditional statements should work as expected if they are used in
a normal sort of manner (see any programming book for basic conditional syntax), which includes
support for nested if statements. They can also be used successfully with highly abnormal syntaxes
(for example, an else toggles reading on or off, regardless of the presence of any preceding ifdefine

26

2.6. Running multiple simulations using scripts

or ifundefine), although this use is discouraged since it will lead to confusing configuration files,
as well as files that may not be compatible with future Smoldyn releases.

Text substitution can also be directed from the command line. If you include the command line
option --define, followed by text of the form key = replacement (do not include spaces, although
if you want spaces within the replacement text, then enclose it in double quotes), this is equivalent
to declaring text substitution using the define global statement within a configuration file. For
example, to the file cmdlinedefine.txt includes the macro key RDIFC but does not define it. To run
this file, define the macro key on the command line like

smoldyn examples/S2 config/cmdlinedefine.txt --define RDIFC=5

This feature simplifies running multiple simulations through a shell script. Essentially any
number of definitions can be made this way. If the same key text is defined both on the command
line and in the configuration file, the former takes priority.

2.6. Running multiple simulations using scripts

It is often useful to simulations over and over again, whether to collect statistics, to look for rare
events, or to scan over parameter ranges. This is easily accomplished by writing a short Python
script, or a script in some other high level language such as R, MatLab, Mathematica, etc. The
following Python script is at S2 config/pyscript.py. It runs the file paramscan.txt several times using
different parameter values, with results sent to the standard output and also saved to different files.

A python script for scanning a parameter

import os

simnum =0

for rxnrate in [0.01 ,0.02 ,0.05 ,0.1 ,0.2 ,0.5 ,1]:

simnum +=1

string=’smoldyn paramscan.txt --define RXNRATE =%f --define SIMNUM =%i -tqw’ %(

rxnrate ,simnum)

print(string)

os.system(string)

Run this script by entering python pyscript.txt.
Another method for running batches of simulations is for your script to generate a Smoldyn-

readable text file with the appropriate parameters, say with the file name myparams.txt. Then,
in your master Smoldyn file, which might also be called from the same script, include the line
read file myparams.txt, which reads in the necessary parameters.

2.7. Summary

The following table summarizes the statements that deal with the configuration file.

Statement meaning

single-line comment
/* ... */ multi-line comment
read file filename read filename, and then return
end file end of this file

27

2. The Configuration File

define key substitution local macro replacement text
define global key substitution global macro replacement text
undefine key undefine a macro substitution
ifdefine key start of conditional reading
ifundefine key start of conditional reading
else else condition for conditional reading
endif ends conditional reading

28

3. Space and time

3.1. Space

Smoldyn simulations can be run in a system that is 1, 2, or 3-dimensional. These can be useful for
accurate simulations of systems that naturally have these dimensions. For example, a 2-dimensional
system can be useful for investigating diffusional dynamics and interactions of transmembrane
proteins. Smoldyn does not permit 4 or more dimensional systems because it is not clear that they
would be useful. Define the system dimensionality with the dim statement, which needs to be one
of the first statements in a configuration file.

Along with the system dimensionality, it is necessary to specify the outermost boundaries of the
system. In most cases, it is best to design the simulation so that all molecules stay within the system
boundaries, although this is not required. All simulation processes are performed outside of the
system boundaries exactly as they are within the boundaries. Boundaries are used by Smoldyn to
allow efficient simulation and for scaling the graphical display. They are typically defined with the
boundaries statement, as seen in the example S1 intro/bounce3.txt. Boundaries may be reflective,
transparent, absorbing, or periodic. Reflective means that all molecules that diffuse into a boundary
will be reflected back into the system. Transparent, which is the default type, means that molecules
just diffuse through the boundary as though it weren’t there. With absorbing boundaries, any
molecule that touches a boundary is immediately removed from the system. Finally, with periodic
boundaries, which are also called wrap-around or toroidal boundaries, any molecule that diffuses off
of one side of space is instantly moved to the opposite edge of space; these are useful for simulating
a small portion of a large system while avoiding edge effects.

On rare occasion, it might be desirable to have asymmetric system boundary types. For example,
one side of a system might be reflective while the other is absorbing. To accomplish this, use the
low wall and high wall statements instead of a boundary statement. This is illustrated in the
example file S3 space/bounds1.txt.

These boundaries of the entire system are different from surfaces, which are described below.
However, they have enough in common that Smoldyn does not work well with both at once. Thus, if
any surfaces are used, the system boundaries will always behave as though the types are transparent,
whether they are defined that way or not. Thus, if there are surfaces, it is usually best to use the
boundaries statement without a type parameter, which will lead to the default transparent type.
To account for the transparent boundaries, an outside surface may be needed that keeps molecules
within the system. The one exception to these suggestions arises for systems with both surfaces and
periodic boundary conditions. To accomplish this with the maximum accuracy, set the boundary
types to periodic (although they will behave as though they are transparent) and create jump type
surfaces, described below, at each outside edge that send molecules to the far sides. The reason
for specifying that the boundaries are periodic is that they will then allow bimolecular reactions
that occur with one molecule on each side of the system. This will probably yield a negligible
improvement in results, but nevertheless removes a potential artifact. This is illustrated in the
example S3 space/bounds2.txt.

29

3. Space and time

3.2. Time

A simulation runs for a fixed amount of simulated time, using constant length time steps. The
simulation starting time is set with time start and the stopping time is set with time stop. For
simulations that are interrupted and then continued, the time now statement allows the initial time
to be set to a value that is intermediate between the starting and stopping times.

The size of the time step is set easily enough with time step, although knowing what value to
use is an art. Smoldyn always becomes more accurate, and runs more slowly, as shorter time steps
are used. Thus, an important rule for picking a time step size is to compare the results that are
produced for one value with those produced with a time step that is half as long; if the results are
identical, within stochastic noise, then the longer time step value is adequate. If not, then a smaller
time step needs to be used.

As an initial guess for what time step to use, time steps can be chosen from the spatial resolution
that is required. The average displacement of a molecule, which has diffusion coefficient D, during
one time step is s =

√
2D∆t, where ∆t is the time step. Turning this around, to achieve spatial

resolution of s, the time step needs to obey

∆t <
s2

2Dmax

where Dmax is the diffusion coefficient of the fastest diffusing species. The overall spatial resolution
for a simulation, which is the largest rms step length, is displayed in the “molecule parameters”
section of the configuration file diagnostics output. For good accuracy, the spatial resolution should
be significantly smaller than geometric features or than radii of curvature, for curved objects.

Other considerations for choosing the time step are the characteristic time scales of the
unimolecular and bimolecular reactions. For good accuracy, the time step should generally be
significantly shorter than the characteristic time scale of any reaction. Using k as the reaction rate
constants, unimolecular and bimolecular reactions lead to the respective time step constraints

∆t <
1

k

∆t <
[A] + [B]

k[A][B]

The latter equation is for the reaction A + B → products. These values are displayed in the
“reaction parameters” section of the configuration file diagnostics output. While the time scale for
unimolecular reactions is independent of concentrations, the time scale for bimolecular reactions
clearly depends on concentrations. Thus, the time scale that is displayed for bimolecular reactions
is only a rough guide at best; it does not account for the changing concentrations of the reactants
nor for local variations in concentrations. As an initial guess, the time step that is chosen should
be the smallest of those that are suggested here for all of these processes. Afterwards, it is usually
worth running several trial simulations with longer or shorter time steps to see what the longest
time step is that still yields sufficiently accurate results.

3.3. Summary of statements that define space and time

The following table summarizes the statements for defining space and time.

30

3.4. Technical discussion of time steps

Statement function

dim dim system dimensionality: 1, 2, or 3
boundaries dim pos1 pos2 system boundaries on dimension dim
boundaries dim pos1 pos2 type same, for systems without surfaces
low wall dim pos type specify single low-side boundary
high wall dim pos type specify single high-side boundary
time start time starting time of simulation
time stop time stopping time of simulation
time step time time step for the simulation
time now time current time of the simulation

3.4. Technical discussion of time steps

A major focus of the design of Smoldyn has been to make it so that results are indistinguishable
from those that would be obtained if the simulated time increased continuously. This goal cannot
be achieved perfectly. Instead, the algorithms are written so that the simulation approaches the
Smoluchowski description of reaction-diffusion systems as the time step is reduced towards zero.
Also, it maintains as much accuracy as possible for longer time steps. This topic is discussed in
detail in the research paper “Stochastic simulation of chemical reactions with spatial resolution and
single molecule detail” by Steven Andrews and Dennis Bray (Physical Biology 1:137-151, 2004).

In concept, the system is observed at a fixed time, then it evolves to some new state, then it is
observed again, and so forth. This leads to the following sequence of program operations:

————— time = t —————
observe and manipulate system
graphics are drawn
molecules diffuse
desorption and surface-state transitions
surface or boundary interactions
0th order reactions
1st order reactions
2nd order reactions
reaction products are added to system
surface interactions of reaction products
————- time = t+ ∆t ————-

After commands are run, graphics are displayed to OpenGL if that is enabled. The evolution over
a finite time step starts by diffusing all mobile molecules. In the process, some end up across internal
surfaces or the external boundary. These are reflected, transmitted, absorbed, or transported as
needed. Next, reactions are treated in a semi-synchronous fashion. They are asynchronous in that
all zeroth order reactions are simulated first, then unimolecular reactions, and finally bimolecular
reactions. With bimolecular reactions, if a molecule is within the binding radii of two different
other molecules, then it ends up reacting with only the first one that is checked, which is arbitrary
(but not necessarily random). Reactions are synchronous in that reactants are removed from the
system as soon as they react and products are not added into the system until all reactions have
been completed. This prevents reactants from reacting twice during a time step and it prevents
products from one reaction from reacting again during the same time step. As it is possible for

31

3. Space and time

reactions to produce molecules that are across internal surfaces or outside the system walls, those
products are then reflected back into the system. At this point, the system has fully evolved by one
time step. All molecules are inside the system walls and essentially no pairs of molecules are within
their binding radii (the exception is that products of a bimolecular reaction with an unbinding
radius might be initially placed within the binding radius of another reactant).

Each of the individual routines that is executed during a time step exactly produces the results
of the Smoluchowski description, or yields kinetics that exactly match those that were requested by
the user. However, the simulation is not exact for all length time steps because it cannot exactly
account for interactions between the various phenomena. For example, if a system was simulated
that only had unimolecular reactions and the products of those reactions did not react, then the
simulation would yield exactly correct results using any length time step. However, if the products
could react, then there would be interactions between reactions and there would be small errors.
In this case, the error arises because Smoldyn does not allow a molecule to be in existence for less
than the length of one time step.

32

4. Molecules

4.1. About molecules

In Smoldyn, each individual molecule is represented as a separate point-like particle. These
particles have no volume, so they do not collide with each other when they are simply diffusing
(however, see “excluded volume reactions” in the reactions section, below, which can give molecules
excluded volume). Because of the rapid collisions that occur for solvated molecules, both rotational
correlations and momentum correlations damp out rapidly in most biochemical systems, so
orientations and momenta are ignored in Smoldyn as well.

Each molecule has a molecular species. Enter the names for these species with the species
statement. You can refer to these species by the same names afterwards, or you can refer to
multiple species at a time using either wildcard symbols or by defining species groups.

Each molecule is allowed to exist in any of five states: (1) not bound to any surface (called
solution state), (2) bound to the front of a surface, (3) bound to the back of a surface, (4) bound
across a surface in the “up” direction, or (5) bound across a surface in the “down” direction. While
the surface-bound states are intended to represent specific molecule attachments to membranes,
they can also be used for other purposes; for example, you can specify that a trans-membrane
protein is normally in its “up” state, but that it’s in its “down” state when it is in a lipid raft.

Molecules that are not bound to surfaces are added with the mol statement. This is a reasonably
versatile statement in that, on each axis, it allows molecules to be placed randomly within the
simulation volume, randomly within some smaller region, or at a specific location. The surface mol

statement is used to add molecules that are bound to surfaces, although it cannot be entered in the
configuration file until the appropriate surface has been set up. Similarly, compart mol is used to
add molecules to compartments, which are regions between surfaces, but it also cannot be entered
until more things have been set up. The statements about molecules mentioned thus far, with the
exception of the last two, are shown in either S1 intro/bounce3.txt or S4 molecules/molecule.txt.

4.2. Diffusion

Molecules in Smoldyn diffuse according to the diffusion coefficient that is entered for the appropriate
species and state. These coefficients are entered with the difc statement. Although it has not
proven to be particularly useful, it is also possible for Smoldyn to simulate anisotropic diffusion,
meaning that molecules diffuse more rapidly in some directions than in others. Anisotropic diffusion
is specified with a diffusion coefficient matrix using the difm statement.

Isotropic diffusion rates were tested quantitatively with the diffi.txt configuration file. In this file,
all molecules start in the center of space, the boundaries are made transparent so molecules diffuse
completely freely, and red, green, and blue molecules diffuse with different diffusion coefficients.
Using a runtime command in the configuration file, described below, Smoldyn outputs the moments
of the molecular distributions to text files. They were analyzed with the Excel file diffi.xls, which is
also in the S4 molecules folder. From this Excel file, the graphical and numerical results are shown
below, along with theoretical predictions.

33

4. Molecules

Figure 4.1.: Output from file diffi.txt showing quantiatively accurate isotropic diffusion.

The middle panel of the figure shows that the mean position of the red molecules, on each of the
three coordinates, stays near zero although with fluctuations. This is as expected for free diffusion.
The expected fluctuation size, shown in the panel with light black lines, is given with

|mean− starting point| ≈
√

2Dt

n

where D is the diffusion coefficient, t is the simulation time, and n is the number of molecules.
This equation agrees well with simulation data. The second moment of the molecule displacements
is a matrix quantity which gives the variance on each pair of axes of the distribution of positions,
shown in the third panel. For example, the variance matrix element for axes x and y is

vxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

The overbars indicate mean values for the distribution. Because diffusion on different axes is
independent, the off-diagonal variances (vxy, vxz, and vyz) are expected to be about 0, but with
some fluctuations, as is seen in the figure. The diagonal variances (vxx, vyy, and vzz) are each
expected to increase as approximately

vxx ≈ vyy ≈ vzz ≈ 2Dt

Again, this is seen in the figure. Similar figures for the green and blue molecules, which are not
presented, showed similarly good agreement between the simulation data and theory.

Anisotropic diffusion was investigated with the example file diffa.txt. In this case, the diffusion
equation is

u̇ = ∇ ·D∇u

Here, u can be interpreted as either the probability density for a single molecule or as the
concentration of a macroscopic collection of molecules, and D is the diffusion matrix. D is
symmetric. The matrix that is entered in the configuration file for anisotropic diffusion, using
the difm statement, is the square root of the diffusion matrix because the square root is much
more convenient for calculating expectation molecule displacements. Matrix square roots can be
calculated with MatLab, Mathematica, or other methods. Note that the symmetric property of
D implies some symmetry properties for its square root as well (for example, a symmetric square
root leads to a symmetric D). If D is diagonal, the square root of the matrix is found by simply

34

4.3. Drift

replacing each element with its square root. If D is equal to the identity matrix times a constant,
D, the equation reduces to the standard isotropic diffusion equation. The example file diffa.txt
illustrates the use of the difm statement; the relevant lines are

difm red 1 0 0 0 0 0 0 0 2

difm green 1 2 3 2 0 4 3 4 1

The former line leads to anisotropic diffusion of red molecules with a diffusion coefficient of 1 on
the x-axis, 0 on the y-axis, and 4 on the z-axis. The latter leads to anisotropic diffusion with
off-diagonal components. This matrix is interpreted to be

√
D =

 1 2 3
2 0 4
3 4 1

Results are shown below

Figure 4.2.: Output from diffa.txt showing quantitatively accurate anisotropic diffusion.

In the figure, it can be seen that the red molecules diffuse only on the x-z-plane, whereas the
green molecules diffuse into an elliptical pattern that is not aligned with the axes. The red molecule
data are graphed, where it is shown that x-values diffuse slowly, y-values don’t diffuse at all, and
z-values diffuse rapidly. The means and variances agree well with theory.

4.3. Drift

In addition to diffusion, molecules can drift, meaning that they move with a fixed speed and in
a fixed direction. Up to version 2.26, drift could only be defined relative to the global system
coordinates. For this method, which is supported in subsequent versions as well, enter the drift
rate using the drift statement, followed by the velocity vector. Surface-bound molecules drift as
well, although they are constrained to surfaces, so their actual velocity depends on the overlap of
the drift vector and the surface orientation (e.g. a molecule’s velocity is zero if the local surface is
perpendicular to the drift vector and it equals the drift vector if that vector can lie within the the
local surface orientation).

New in version 2.27, surface-bound molecules can also drift relative to the coordinates of their
surface panel. Specify this with the surface drift statement. For a 2-D system, surfaces are 1-D
objects, so the surface-bound drift vector is a single number. It is the drift rate along “rectangles,”
“triangles,” “spheres,” etc., all of which are really just different shape lines. For a 3-D system,

35

4. Molecules

surfaces are 2-D objects, so the surface-bound drift vector includes two values, which generally use
the most obvious orthogonal coordinates for each panel shape. For a cylinder, for example, the
former number is the drift rate parallel to the cylinder axis and the latter is the drift rate around
the cylinder. A possible use of surface-bound drift would be to simulate molecular motor motion
along a cylinder that represents a microtubule.

4.4. Molecule lists

From a user’s point of view, Smoldyn molecules follow a Western life trajectory: some chemical
reaction causes a new molecule to be born from nothing, it diffuses around in space for a while,
and then it undergoes a reaction and vanishes again into nothingness (or maybe goes to molecule
heaven). Internally though, the situation is closer to a Wheel of Life: there are a fixed number of
molecules that cycle indefinitely between “live” and “dead” states and which are assigned a new
species type at each reincarnation. The dead molecule list is of no importance to the functioning
of the simulation, but merely stores molecules when they are not currently active in the simulated
system. The size and current population of the dead list are displayed in the molecule section of
the configuration file diagnostics if you choose verbose output.

Active molecules in a simulation are stored in one or more live lists. As a default, all live molecules
that diffuse, meaning that the diffusion coefficient is non-zero, are stored in a list called “diffuselist”
while all fixed molecules are stored in a separate live list called “fixedlist.” The separation of the
molecules into these two lists speeds up the simulation because all molecules in fixedlist can be
safely ignored during diffusion calculations or surface checking.

Additional live lists can be beneficial as well. For example, consider the equilibrium chemical
reaction A + B ↔ C. The only bimolecular reaction possible is between A and B molecules, so
there is no need to check each and every A-A, B-B, A-C, B-C, and C-C molecule pair as well to
look for more possible reactions. In this case, storing A, B, and C molecules in three separate lists
means that potential A-B reactions can be checked without having to scan over all of the other
combinations too. This is done in the example file S4 molecules/mollist.txt, where it is found that
using three molecule lists for A, B, and C leads to a simulation that runs 30% faster than using
just one molecule list. With a Michaelis-Menten reaction, the difference was found to be closer to
a 4-fold improvement.

While it might seem best to have one molecule list per molecular species, it is not quite so
simple. It is often the case in biology modeling that many chemical species will exist at very
low copy number. In particular, a protein that can bind any of several ligands needs to be
defined as separate molecular species for each possible combination of bound and unbound ligands.
This number grows exponentially with the number of binding sites, leading to a problem called
combinatorial explosion. Because there are so many molecular species, there are relatively few
molecules of each one. Returning to the Smoldyn molecule lists, each list slows the simulation
speed by a small amount. Thus, adding lists is worthwhile if each list has many molecules in it,
but not if most lists are nearly empty.

At least for the present, Smoldyn does not automatically determine what set of molecule lists
will lead to the most efficient simulation, so it is up to the user make his or her best guess. Molecule
lists are defined with the statement molecule lists and molecule species are assigned to the lists
with mol list. Any molecules that are unassigned with the mol list statement are automatically
assigned to new a list called “unassignedlist”.

36

4.6. Wildcards

4.5. Statements about molecules

The following table summarizes the statements about molecules.

Statement function

species name1 name2 ... namen names of species
difc species(state) value diffusion coefficient
difm species(state) m0 m1 ... mdim∗dim−1 diffusion matrix
drift species(state) v0 v1 ... vdim1 global drift vector
surface drift species(state) surface pshape v0 v1 surface-relative drift vector
mol nmol species pos0 pos1 ... posdim−1 solution molecules placed in system
surface mol nmol species(state) surface pshape panel [pos0 pos1 ... posdim−1]

surface-bound molecules placed in system
compartment mol nmol species compartment molecules placed in compartment
molecule lists listname1 listname2 ... names of molecule lists
mol list species(state) listname assignment of molecule to a list

4.6. Wildcards

Most statements that work with molecular species allow you to specify multiple species using
wildcard characters, such as “?” and “*”. A question mark can represent exactly one character
and an asterisk can represent zero or more characters. For example, if you want protein Fus3 to
have a different diffusion coefficient in the cytoplasm as in the nucleus, you might define it as two
species, Fus3 cyto and Fu3 nucl. Then, you could specify that they are both colored red using
color Fus3 * red.

Smoldyn supports many other wildcards as well. The logical operators are “|” for OR and “&”
for AND, along with braces to enforce an order of operation. Use the former operator to enumerate
a set of options. Continuing with the above example, you could specify that both species should
be red with Fus3 {cyto|nucl}, where this is now more specific than using the asterisk wildcard
character. Use the ampersand to specify that multiple terms are in a species name but that the
order of the terms is unimportant. For example, a&b&c represents any of the 6 species: abc, acb,
bac, bca, cab, and cba. The “&” operator takes precedence over the “|” operator so, for example,
a|b&c represents any of: a, bc, and cb. On the other hand, {a|b}&c represents any of: ac, bc, ca,
and cb. The following table summarizes Smoldyn’s wildcard options.

Symbol meaning matching example reaction example

? any 1 character A? matches Ax and Ay A? + B -> A?B

* any 0 or more characters A* matches A, Ax, Axy A + B* -> AB*

A|B either A or B A|B matches A, B A|B + C -> D

A&B either AB or BA A&B matches AB, BA A&B + C -> D

{} order of operation A&B|C matches AB, BA, AC, CA A&B|C -> 0

[ad] any 1 character in list A[ad] matches Aa and Ad A[1-4] -> B[1-4]

[a-d] any 1 character in range A[ac-e] matches Aa, Ac, Ad, Ae A[1-4] -> B[1-4]

$n n’th match on left side A? + B? -> C$1C$2

37

4. Molecules

4.7. Species groups

You can create your own groups of species by defining species groups. This allows you to set the
properties of multiple species at once. It also enables the results for multiple species to be added
together for many of the observation commands. Species groups function essentially identically to
groups of species that are designated using wildcard characters or using the BioNetGen module.
Define a species group with the species group statement.

38

5. Graphics

5.1. Graphics display

Graphics are useful for designing and debugging configuration files, for understanding the results
of a simulation, and for communicating simulation results to others.

Graphical output, and the overall type of graphics, is enabled with the graphics statement which
is included at the beginning of most of the example files. Smoldyn supports the graphics options:
“none”, “opengl”, “opengl good”, and “opengl better”. The “none” option means that no graphics
are displayed, which is convenient for running batches of quantitative simulations. The “opengl”
option shows molecules as small squares that don’t account for which is in front of others. This
is poor rendering quality but is fast to simulate. The “opengl good” option replaces these squares
with circles that are a little better looking, that account for depth-testing, and are much slower to
render. Finally, the “opengl better” option allows for the placement of light sources, for molecules
to be shiny spheres, and for surfaces to be shiny. This yields fairly good quality results.

Graphical rendering can be as computationally intensive as the simulation itself, so it can be
prudent to not display the system at every simulation time step, but only every n’th time step.
This is done with the graphic iter statement. Alternatively, exactly the opposite may be wanted.
It may be that the simulation runs too quickly for one to understand what’s being shown in the
graphics window as it happens. To slow the simulation down, use the graphic delay statement.

If you use the graphical output, then Smoldyn does not stop when the simulation is complete,
but it instead lets you continue manipulating the graphics. When you are done, press “Q” (shift
and “q” key). You can also stop using command-q, but that is less good because it forces Smoldyn
to quit immediately rather than simply telling Smoldyn to finish its tasks (such as closing files
and freeing memory) and then quit. If you want Smoldyn to stop as soon as the simulation
is complete, use the quit at end statement (alternatively, create and set the shell environment
variable SMOLDYN NO PROMPT to any value for the same result).

The graphical display can be manipulated during the simulation using the keyboard. These keys
and their actions are listed in the table shown below. Note that it is possible to rotate the system
about either the viewing axes with the arrow keys, or about the object axes with the x, y, and z
keys.

Key press dimensions function

() space 1,2,3 toggle pause mode between on and off
Q 1,2,3 quit
T 1,2,3 save image as TIFF file
0 1,2,3 reset view to default
arrows 3 rotate object
shift + arrows 1,2,3 pan object
= 1,2,3 zoom in
- 1,2,3 zoom out
x,y,z 3 rotate counterclockwise about object axis
X,Y,Z 3 rotate clockwise about object axis

39

5. Graphics

5.2. Drawing the system

Several statements control the drawing of the system. The background color is set with
background color, the system boundaries are drawn with the line thickness that is set with
frame thickness and the color that is set with frame color. Although the feature is usually
turned off, the grid thickness and grid color statements can be used to display the virtual
boxes into which the system is divided (see the optimization section). Molecules are drawn with a
size that is set with display size and a color set with color. All of the statements that set colors
require either color words chosen from the table below, or numbers for the red, green, and blue
color channels. Regarding the molecule display size, dimensions are in pixels if the output style is
just “opengl” and are in the same length units are used in the rest of the configuration file if the
output style is “opengl good”.

5.3. Colors

Colors can be entered with color coordinates or names. Color coordinates are for the red, green
and blue channels, with each value ranging between 0 (fully off) and 1 (fully on). Surfaces also
allow a fourth color channel, the alpha channel, which is the surface opacity. Here, a value of 0
indicates a transparent surface and 1 indicates an opaque surface. Smoldyn does not support this
feature very well, so it’s generally best to stick with opaque surfaces.

The following table lists the available color names.

maroon olive royal darkred
red green sky darkorange
scarlet chartrouse aquamarine darkyellow
rose khaki violet darkgreen
brick purple mauve darkblue
pink magenta orchid darkviolet
brown fuchsia plum lightred
tan lime azure lightorange
sienna teal black lightyellow
orange aqua gray lightgreen
salmon cyan grey lightblue
coral blue silver lightviolet
yellow navy slate
gold turquoise white

5.4. Text display to the graphics window

A few text items can be written to the graphics window during the simulation, all of which are
displayed in the upper left corner of the graphics window. These are the simulation time and the
numbers of different molecular species in the simulation. Use the text color and text display

statements to control this output.

40

5.5. TIFF files and movies

5.5. TIFF files and movies

Graphical images may be saved as TIFF images that are copied from the graphical display. Thus,
the saved image size and resolution are the same as they are on the screen. A single snapshot can be
saved during a simulation by pressing “T” (uppercase). As a default it is saved as “OpenGL001.tiff”,
which will be in the same file directory as the configuration file. Alternatively, the configuration file
statements tiff name can be used to set the basic name of the file (a name of “picture” will end
up being saved as “picture001.tiff”). The numerical suffix of the name can be set with tiff min

and tiff max. The tiff max value can be set to arbitrarily large numbers, although reasonable
values are recommended so that vast numbers of useless tiff files can’t be saved by accident.

A sequence of TIFF files can be saved automatically with the tiff iter statement, allowing
one to save an image sequence for later compilation into a movie. TIFF files can also be saved
automatically with the keypress T command, which allows more versatile timing than the tiff iter

statement. Compiling an image sequence into a movie is easy with Apple’s QuickTime Pro or with
various other programs.

5.6. Summary of basic graphics statements

The following images show Smoldyn’s graphics for 1D, 2D, and 3D systems, made with the files
graphics1.txt, graphics2.txt, and graphics3.txt. All of these use the “opengl good” graphics quality.

Figure 5.1.: Output from graphics1.txt, graphics2.txt, and graphics3.txt showing some graphics
options.

The following table lists the graphics statements

Statement function

graphics str graphical output method
graphic iter int time steps run between renderings
graphic delay float additional delay between renderings
quit at end yes/no Smoldyn should quit when it’s done
frame thickness int thickness of system frame
frame color color color of system frame
grid thickness int thickness of virtual box grid
grid color color color of virtual box grid
background color color background color

41

5. Graphics

display size namefloat size of display for a molecule species
color color color for a molecule species
text color color color for text display
text display item item that should be displayed with text
tiff iter int time steps between TIFF savings
tiff name name root name of TIFF files
tiff min int initial suffix for TIFF files
tiff max int largest possible TIFF suffix

The color parameter can be either a color name, or the red, green, and blue color coordinates.

5.7. Better graphics

Smoldyn’s better graphics, selected with the graphics opengl better statement, are intended to
be adequate for publication-quality figures. With them, you can define a “room” light and up to
8 point lights. The room light is non-directional. Define its color with the ambient option. Each
point light has a position and then colors for its ambient light, diffuse light, and specular light. To
make the light position as a 3-dimensional point in space, enter 4 values for the position, and make
the last value equal to 1. Alternatively, you can make the light directional but not arising from a
specific position. To do this, keep all of the x, y, and z values between 0 and 1, and set the 4th
value to 0. Ambient light is non-directional and does not reflect off of a surface. Diffuse light is
directional (from the light source) but lights the illuminated side of a surface evenly, as though it
is a non-shiny surface. Specular light is also directional and reflects off of a surface as though it is
shiny.

Within each surface block, you can set the shininess of the surface with the shininess statement.

42

6. Runtime commands

6.1. Command basics

The design of a simulation can be broken down into two portions. One portion represents the
physical system, including its boundaries, surfaces, molecules, and chemical reactions. These are the
core components of Smoldyn and are simulated by the main program. The other portion represents
the action of the experimenter, which include observations and manipulations of the system. As
with the parameters of the physical system, these actions are also listed in the configuration file.
They are listed as a series of commands and execution times.

There are no rules regarding what commands can and cannot do. Thus, in principle, commands
could be used to measure any aspect of the simulated system at any time. Or, other commands
could be used to manipulate any aspect of the system, regardless of whether the manipulations
have any physical basis. In practice, there is a limited set of commands that have been written
(listed below in the reference section) so the range of what can actually be done with commands
is limited to what those in this list can do. Alternatively, a somewhat adventurous user can write
his or her own source code to create a new command, as explained below. Because commands do
not have to follow the rules that the rest of the code does, they are easy to add and are powerful,
but they also tend to be less stable and less well optimized than the core program.

Commands are entered in a configuration file with the statement cmd, followed by some
information about the execution timing, the specific command name, and finally any parameters
for the command. Here are some examples:

cmd b pause

cmd e ifno ATP stop

cmd n 100 molcount outfile.txt

The first one instructs the simulation to pause before it starts running, the second says that
the simulation should stop if there are no molecules named ATP, and the third tells Smoldyn to
print a count of all molecules to the file called outfile.txt every 100 iterations. In contrast to the
statements that define the physical system, runtime commands are not parsed or interpreted until
the simulation time when they are supposed to be executed. When a command is executed, Smoldyn
processes it with a runtime command interpreter. If there are errors in command parameters, such
as a missing or nonsensical parameter, these are not caught until the command is executed during
the simulation.

Command execution timing works in either of two ways. A command can be performed at real-
valued simulation times, such as before the simulation starts, at some particular time, or repeatedly
at fixed time intervals. Alternatively, a command can be performed after some specified number of
time steps. This avoids minor timing problems that can arise from round-off error. Commands for
these two methods are stored in the continuous-time and integer command queues, respectively. At
each time step, Smoldyn runs commands from the integer queue first and then the continuous-time
queue. Within each queue and at a particular time step, Smoldyn runs commands in the same
order that they were listed in the configuration file. Command timing is demonstrated with the
configuration files S6 commands/cmdtime1.txt and S6 commands/cmdtime2.txt.

The following table shows the command timing options.

43

6. Runtime commands

Code parameters execution timing

continuous time queue
b runs once, before simulation starts
a runs once, after simulation ends
@ time runs once, at ≥ time
i on off dt runs every dt, from ≥ on until ≤ off
x on off dt xt geometric progression
integer queue
B runs once, before simulation starts
A runs once, after simulation ends
& i runs once, at iteration i
I oni offi dti runs every dti iteration, from ≥ oni to ≤ offi
E run every time step
N n runs every n time steps

A few deprecated codes, which are in addition to the codes listed above, are that j is equivalent to
I, e is equivalent to E, and n is equivalent to N. Although these are deprecated, they are commonly
used, so they will probably be supported indefinitely.

Each command is one of three main types: control, observe, or manipulate. Control commands
control the simulation operation. For example, a command called keypress, followed by a letter,
causes the simulation to act as though that key had been pressed by the user. This can be useful for
modifying the display automatically. Observation commands read information from the simulation
data structures, analyze the data some, and output results to text files. The precision of numerical
output values can be set using the output precision statement. Neither control nor observation
commands modify any aspect of the simulation. Manipulation commands modify the simulation
parameters, such as the addition, removal, or replacement of molecules, or the modification of
reaction rate constants. These commands do not produce any output. Yet a fourth type of command
is the conditional command. These test for certain simulation conditions, such as there being more
than some number of some molecule species, and then run a second command if the conditions are
met. Each conditional command is characterized as being one of the three main types based on
the type of its second command.

6.2. Output format and files

Most observation commands output a series of data values. The default format is “ssv”, which is
space-separated vectors. These are easy for a person to read but are not as convenient when using
most software. Thus, you can also use the output format statement to specify that you want “csv”
output, which are comma-separated vectors.

For observation commands to work, one typically needs to declare the output file names with
the statements output files or append files. The exception to this is if output should go to the
standard output or standard error location, which are typically the terminal window. These are
called “stdout” and “stderr”, respectively, exactly as in C or C++. These can be declared with
the output files statement but don’t need to be.

To save output files in a subdirectory, the subdirectory path is declared with the output root

statement. Note that the path needs to end with a “/”, if you’re working on a Mac or Linux system,
or “

44

6.3. Specific commands

” for Windows. This subdirectory path is concatenated on the end of the path that was used
for the configuration file. It is possible to save a stack of files in which there is a separate
file for each of many sequential observations. These are created with the output file number

statement, which defines the starting suffix number for the file stack. Zero, which is the default,
indicates no suffix number, whereas other numbers lead to a 3 digit suffix. The suffix number is
incremented with the command incrementfile. The complete output filename is a concatenation of:
the path for the configuration file, the string declared with output root, the file name declared with
output files minus any suffix that starts with a “.”, an underscore and the suffix number declared
with output file number, and finally any suffix that starts with a “.”. Here is an example, using
Mac and Linux path notation:

working directory: theory

configuration file: theory/expt1/myconfig.txt

desired output files: theory/expt1/results/outfile 001.txt

theory/expt1/results/outfile 002.txt

...

Configuration file excerpt:

output_root results/

output_files outfile.txt

output_file_number outfile.txt 1

cmd n 100 incrementfile outfile.txt

cmd e molcount outfile.txt

Starting Smoldyn: smoldyn expt1/myconfig.txt

Because of the potential for confusion with output file names, complete pathnames (relative to
the working directory) are displayed at start-up with the simulation parameters.

An example that is essentially identical to the one shown above is in given in the example file
S6 commands/cmdfile.txt. Upon running it and looking at the results, you will discover that the
first output file, cmdfileout 001.txt, is empty, whereas all of the others are full, as expected. The
empty file arises because the file number is incremented at the very beginning, before the molcount
command is invoked for the first time. This could be remedied by using slightly more sophisticated
command timing with the “i” or “j” timing codes.

6.3. Specific commands

All of the commands are listed below in the reference section, which is the definitive source of
information about them. Most of the commands are also demonstrated in the example files
S6 commands/cmdobserve.txt and S6 commands/cmdmanipulate.txt. Of the full list of commands,
some are quite useful, some are rarely used, and some have been superceded by newer code. The
last category includes several that implement rudimentary reflecting surfaces, which were written
before a good treatment of surfaces was added to the core program. Of the more useful commands,
a few deserve special mention.

The molcount command, and several variations of it, are used to save the numbers of each
kind of molecule as a function of time. These are often the most useful text output commands
from Smoldyn. The savesim command causes the entire simulation state to be saved to a file as
a configuration file that can be read by Smoldyn. With it, one can save a simulation mid-run

45

6. Runtime commands

and then continue running it later. This can be useful as a backup for intermediate results or for
building starting states for complex simulations in several stages.

The keypress command creates an event that the program responds to, as though the user had
pressed this key. For example, at the end of a simulation that uses graphics, the graphics window
is left on the screen until the user selects quit from the menu or presses “Q”. This quitting can also
be programmed into the configuration file with “cmd a keypress Q”. Arrows and other keypress
options can be entered as well.

The set command enables you to enter essentially any configuration file statement mid-simulation.
For example, the command set species green creates the species named “green” when the
command is invoked, rather than at the beginning of the simulation. It’s also possible to create
surfaces, add reactions, etc. mid-simulation.

6.4. Summary of statements about commands

The following table summarizes the statements used for commands.

Statement function

output root str root of path for text output
output files str1 str2 ... strn file names for text output
output precision int precision for numerical output
append files str1 str2 ... strn file names for text output
output file number int starting suffix number for file name
output format str output format; either ssv or csv
cmd b,a,e string command run times and strings
cmd @ time string
cmd n int string
cmd i on off dt string
cmd x on off dt xt string

46

7. Surfaces

7.1. Surface basics

A large fraction of biochemistry does not happen in free solution, but at or across cellular
membranes. To model these interactions, Smoldyn supports surfaces within the simulation volume.
Typically, one Smoldyn surface is used to model each type of membrane. For example, a bacterium
might be modeled with one surface for the inner membrane and another for the outer membrane,
while a eukaryotic cell would use separate surfaces for the plasma membrane, the nuclear membrane,
and for each type of organelle. Smoldyn supports disjoint surfaces as well, such as for a collection
of vesicles.

Each Smoldyn surface comprises many panels. These panels have simple geometries: for three-
dimensional systems, a panel may be a rectangle, triangle, sphere, cylinder, hemisphere, or a disk.
For one- and two-dimensional systems, lower dimensional analogs of these panel shapes can be
used. There are two main reasons that Smoldyn supports this variety of primitive shapes rather
than just the triangle meshes that are more common. First, these are much easier to use for simple
models. For example, it is much easier to specify a simple spherical nucleus for a cell than it is to
build an approximate sphere out of 20 or more triangles. Second, it is faster to simulate molecular
collisions with one sphere or other simple curved objects than with a lot of triangles. In general,
more geometric primitives are better. (Although, from the Smoldyn programmer’s point of view,
each one also requires a significant amount of math before it can be supported by Smoldyn).

Each surface includes a set of rules that dictate how molecules interact with it. This includes
molecules that diffuse into it from solution, as well as molecules that are bound to the surface. All
panels on a single surface interact with molecules in the same ways. Molecules that are bound to
a surface are designed to represent membrane-bound proteins and trans-membrane proteins. For
example, they can model signaling receptors or ion channels.

7.2. Defining surfaces

Surfaces are typically entered with one or more blocks of statements that start with start surface

and end with end surface. Between these, only surface statements are recognized. A single surface
may be broken up into multiple blocks of statements, and each block may describe multiple surfaces.
The surface name may be given after the start surface statement, or it can be given afterwards
with the name statement; this specifies which surface is being defined, and starts a new one if
required.

As was mentioned before, Smoldyn surfaces do not work well in conjunction with the system
boundaries that were defined with the boundaries, low wall, or high wall statements. If a
configuration file includes any surface statement, even if no surfaces are actually defined, then
all wall-type boundaries automatically behave as though they are transparent. To keep molecules
within the system, an outermost surface needs to be defined. It may be a set of rectangular panels
that are coincident with the system walls, a sphere that encloses the system, or something else.
Molecules could also be allowed to escape the system although that is usually undesirable and

47

7. Surfaces

can slow the simulation down (see below for the unbounded emitter statement, which provides an
efficient alternative to escaping molecules).

The action or rate statements set the rules that molecules follow when they interact with a
surface. For molecules in solution that collide with one of the surface faces, which are called front
and back, there are three basic actions: reflection off of the surface, transmission through the
surface, or absorption by the surface. It is also possible for a surface to be a “jumping” surface,
such that if a molecule collides with it in one place, the molecule will be magically transported
to a pre-defined destination. This is described below, as is another type of special surface called
a “porting” surface. Yet another action option is “multiple”, meaning that there any of several
outcomes are possible and that there are specific rates for each. These rates are set with the rate
statement (if rate is entered, the only possible action is “multiple”, so the action statement may
be omitted). For example, a membrane might be somewhat permeable to a molecular species,
in which case one would set some rate for transmission; molecules that are not transmitted are
reflected. Using the rate statement, it is also possible to cause a molecule to change species when
it interacts with a surface. This is designed for molecules that behave sufficiently differently in
different regions of space that it is most convenient to treat them with two different species; a
typical use is for spatially-dependent diffusion coefficients.

The action and rate statements also apply to collisions of surface-bound molecules with other
surfaces. This can arise when molecules diffuse along surfaces and two surfaces cross each other.
For example, one way to create a lipid raft is to create a single surface for a cell membrane and
then a short cylinder that intersects the membrane, creating an inner circular region and an other
region (a Gaussian pillbox). Then, surface-bound molecules change species names when they cross
the cylinder. An exception to the normal behavior arises when a surface-bound molecule collides
with a panel that has been declared to be a neighbor of the molecule’s panel. In this case, there
are two options, which are selected with the neighbor action statement. The default behavior is
that the molecule simply ignores the panel and diffuses through it. Alternatively, the molecule can
be allowed to hop onto the new panel, with a 50% probability of doing so. This latter possibility is
helpful for allowing diffusion on a surface where the panels don’t necessarily meet at their edges.

Sometimes, one wants a modeled system to be unbounded, such as for the simulation of
pheromones that diffuse freely between cells, but that can also diffuse away towards infinity.
While Smoldyn can simulate such unbounded systems with unbounded space, this can be very
computationally intensive because it tracks every molecule, no matter how far it is from the region
of interest. A better solution is to define a surface that surrounds the portion of the system that
is of interest, where these surface panels absorb molecules at a rate that causes the system to
behave as though it were unbounded. Smoldyn calculates this absorption rate automatically, from
information that the user specifies with the unbounded emitter statement. This statement declares
the positions and the production rates for each emission source within the simulation volume.
The new absorption coefficients completely replace any other actions that might be defined for
interactions between this surface and molecular species.

7.3. Defining surface panels

Individual surface panels are defined with one panel statement for each individual panel. These
statements are used to specify panel locations, dimensions, orientations, and, sometimes, drawing
information. Each panel also has a name, for which the default is simply the panel shape followed
a number, although it is also possible for the name to be defined by the user at the end of the panel
statement. These names are used for jumping surfaces and diffusion of surface-bound molecules.

48

7.3. Defining surface panels

For a surface to work in a consistent manner, it is worth making sure that all panel front sides face
the same way. The drawing information, such as the numbers of slices and stacks for a sphere, is
only used for graphical rendering. As far as the simulation is concerned, a sphere, regardless of
how it is drawn, is always a mathematically perfect sphere.

In general, panels should not be defined that are coincident with each other because this can
lead to unreliable behavior. The rule is that if multiple panels are exactly coincident, whether
they are members of the same surface or different ones, then only the one that is defined last in
the configuration file is in effect. For example, one could define a washer-shaped surface using a
large disk that reflects all molecules and a small disk, which has the same center and is parallel
to the large disk, that transmits all molecules. However, computer round-off error often makes
exact coincidence impossible; at best, it is most likely to work if the panels are parallel to the
system axes or if they share the same center point. If two panels are very nearly but not exactly
coincident (separations between 0 and 10−12 distance units), Smoldyn treats them as though they
are reflective, which it has to do in order to prevent unintentional leaks where panels cross each
other. Graphical rendering of coincident panels is unpredictable but rarely good.

Several configuration files were written to test the surface actions with all dimensions and all panel
shapes. They are in the examples/S7 surfaces directory and are called reflect#.txt, transmit#.txt,
and absorb#.txt, where the “#” is 1, 2, or 3 for the system dimensionality. Additionally, the three
surf#.txt files show the basic actions in single files. Following is an excerpt from reflect3.txt, which
shows how a surface and its panels can be defined:

start_surface surf

action all both reflect

color both purple 0.5

thickness 2

polygon front face

polygon back edge

panel rect +0 40 40 40 20 20

panel rect -0 60 40 40 20 20

panel rect +1 40 40 40 20 20

panel rect -1 40 60 40 20 20

panel rect +2 40 40 40 20 20

panel rect -2 40 40 60 20 20

panel tri 60 15 70 80 15 70 70 15 86 # 1 2 3

panel tri 60 15 70 70 15 86 70 31 77 # 1 3 4

panel tri 70 15 86 80 15 70 70 31 77 # 3 2 4

panel tri 80 15 70 60 15 70 70 31 77 # 2 1 4

panel sph 20 20 20 8 20 20

panel cyl 20 75 20 80 75 80 5 20 20

panel cyl 20 30 70 20 50 70 4 20 20

panel hemi 20 75 20 5 1 0 1 20 20

panel hemi 80 75 80 5 -1 0 -1 20 20

panel disk 20 30 70 4 0 -1 0 20

panel disk 20 50 70 4 0 1 0 20

end_surface

Several statements control the drawing of surfaces to the graphics window. The color statement
specifies the color of the front and/or back of the surface with either color words or red, green,
blue, and alpha (opacity) values. As mentioned above in the graphics section, OpenGL does not
render well with alpha values between 0 and 1. Thickness defines the line width that should be
used for drawing surface edges, or for surfaces in 2-dimensional systems. The polygon statement
is used to set the drawing mode for showing just the panel edges, only panel vertices, or complete
panel faces. It also allows filling of regions for surfaces in 2-dimensions.

49

7. Surfaces

7.4. Jumping surfaces

There are a few situations in which one might reasonably want to have molecules move
discontinuously, leaping from one place to another. One is for periodic boundaries in which
molecules that diffuse off of one side of the system immediately diffuse onto the other side, thus
keeping the composition of the system constant while avoiding effects that can arise from edges.
Another situation is for building complex surface structures from the Smoldyn panel primitives
without resorting to triangulated meshes. For example, one might want to have two spherical cells
whose cytoplasms are linked by a narrow cylindrical channel, making a dumbbell shape. This would
be easy to design in Smoldyn, except that there is no way to cut holes in the spheres where the
cylinder should be attached. The solution is to put small disk-shaped “jumping” panels on each
side of the spot where the hole is wanted so that molecules can be transported across the barrier
(see examples/S7 surfaces/dumbbell.txt).

To define a jumping surface, the action for each molecule that is to be jumped (usually set to all
molecules, although fewer is permissible too), for the active face of the surface, is set to “jump.”
Next, the active face of each panel needs to be assigned a destination panel and face using the jump
statement. The source and destination panels are required to be the same shape and to be parallel
to each other although, for certain shapes, they may differ in size.

Jumping surfaces are demonstrated with the files jump1.txt, jump2.txt, and jump3.txt, all in the
S7 surfaces directory.

Surface-bound molecules used to jump when they diffused onto panels that had surface-bound
jump actions. However, this feature was removed in version 2.37 because it was complicated and
there were better ways of accomplishing the same result.

7.5. Membrane-bound molecules

In Smoldyn, molecules can be in free solution or bound to surfaces. The bound ones can be
attached on the front of the surface or on the back, called the “front” and “back” states, or they
can be transmembrane molecules in either an “up” orientation or a “down” orientation. The precise
meanings of these states are decided by the user. As an example, if a receptor is oriented such that
the ligand binding site is on the outside of the cell, as usual, it could be called “up,” whereas if it
were in the membrane in a reversed orientation, it could be called “down.” In all, there are five
states that molecules can be in: “solution,” “front,” “back,” “up,” or “down,” of which the last four
are the surface-bound states. In practice, all four surface-bound states are essentially equivalent.
A molecule in any of these states is allowed to interact with solution-phase molecules that are on
either side of the surface, and it can desorb to either side of the surface. The only real difference
between these states is that Smoldyn ensures that molecules in the “front” state have coordinates
that are slightly on the front side of the surface and those in the “back” state have coordinates
that are slightly on the back side of the surface. Smoldyn does not fix the coordinates to be on any
particular side for molecules in the “up” or “down” states, which makes these states simulate very
slightly faster.

Additionally, it is sometimes necessary to specify the position of a solution-state molecule relative
to a surface. For this, the pseudo-states “fsoln” (which is identical to “solution”) and “bsoln” specify
that it is solution state and on the front or back of the relevant surface.

The surface mol statement, which was mentioned in the section on molecules, is used to specify
that there are molecules bound to a surface at the start of a simulation. The statement is quite
versatile, allowing one to specify that molecules are scattered randomly over an entire surface, over

50

7.5. Membrane-bound molecules

specific panel shapes, over specific panels, or even over all surfaces. Also, of course, it is possible
to specify exact molecule locations.

The rate statement, mentioned before in the context of partially permeable surfaces, is also used
for transition rates for surface-bound molecules. It can be used for specifying the rate at which a
solution-state molecular species is adsorbed onto a surface. It can also be used for the release rate,
from surface to solution. In this situation, the release side of the surface is identified by giving the
destination state as either “fsoln” or “bsoln”, for the front and back, respectively. Rate is also used
for transition rates between the different surface-bound states, such as from “front” to “back.”

Surface-bound molecules diffuse within the plane of the surface according to the diffusion
coefficient that was entered with the difc statement for the respective molecule state. To allow
molecules to diffuse between neighboring surface panels, whether they are part of the same surface
or different surfaces, these neighbors have to be declared with the neighbors statement. Diffusion
on surfaces is reasonably quantitatively accurate, which is best understood with an explanation of
the algorithm (most of which was new in version 2.37). Considering a three-dimensional system,
a surface-bound molecule is initially diffused in all three dimensions. It is then moved back to the
local plane of the panel that it is bound to. If this puts the molecule within the area of its panel,
then the diffusion step is done and no further actions are taken. This approach is exact for flat
panels and reasonably good for curved panels (and becomes exact in the limit of short time steps).
If the new position is not within the area of the molecule’s panel, Smoldyn determines where the
line of the molecule’s trajectory exits the current panel. Smoldyn then determines if there are
other panels at this point (it actually checks for panels within an extremely small distance called
neighdist from this position, which is just large enough to prevent problems from computer round-
off error). If so, it chooses one of these panels at random and rotates the molecule’s trajectory that
extends beyond the original panel into the plane of the new panel, thus preserving the length of the
trajectory. If the end point of the new trajectory is within the new panel, then the diffusion step is
done. If not, Smoldyn repeats the procedure until the trajectory is used up. Returning to a prior
condition, if the molecule’s trajectory leaves the molecule’s current panel but there is no neighbor
near the exiting point, then the molecule does not continue onto a neighbor. Instead, it reflects off
of the panel edge, so that the trajectory continues on the original panel. This procedure should be
exact for flat panels and extremely good for curved panels.

Note that molecules only transition from one panel to another when they diffuse off the edge
of the initial panel. Thus, for example, a molecule can never diffuse off an edge of a sphere, with
the result that molecules cannot diffuse from one sphere to another, even if these spheres intersect.
If diffusion between panels is desired in these cases, then use the neighbor action statement, as
described above. However, be forewarned that diffusion between neighboring panels can interact
badly with the neighbor action hopping, which is why this hopping is turned off as a default. For
example, suppose several 2D panels (which are lines) meet at a single point. A molecule diffusing
along one of the panels correctly transitions to a new randomly chosen panel when it gets to that
point. However, if neighbor action is set to hopping, then the trajectory during this transition
might be discovered to cross yet another one of the panels in the process, so the molecule would
then get moved onto this new panel. The probability of this outcome is biased by the precise panel
positions and by round-off errors, with the result that the molecule position statistics would be
incorrect.

Files that demonstrate surface-bound molecules are: S7 surfaces/stick2.txt and cellmesh.txt
(which reads cellmeshfile.txt). Surface diffusion is demonstrated with the files in
S7 surfaces/surfacediffuse/.

51

7. Surfaces

7.6. Smoldyn bugs

As far as I know, there are no bugs currently in Smoldyn that cause surfaces to behave other than
requested. However, leaking surfaces have been a recurring problem with Smoldyn. In this problem,
which can be caused by any of a vast number of small mistakes in the source code, molecules that
shouldn’t go through a surface are found to have done so. Some commands that were written to test
for it are: warnescapee and killmoloutsidesystem. If you suspect that Smoldyn isn’t working
right, or if you just want to verify that it is working right (a good idea if you don’t use graphical
output), then it might be worth running these or other commands. The former one has to be run
at every time step to be useful. The latter one has no output directly, but will identify problems if
it is bracketed by molcount commands. The command killmolinsphere can be used in a similar
manner.

7.7. Statements about surfaces

The following table summarizes the statements about surfaces.

Statement function

max surface int (optional) maximum number of surfaces
start surface name start of a surface block
name name optional statement for the surface name
action species(state) face action [new spec] action for when a molecule contacts surface
rate molec state1 state2 value [new spec] transition rate
neighbor action action
rate internal molec state1 state2 value [new spec]
color face color [alpha]
thickness float
polygon face drawmode
shininess face value
max panels char int (optional)
panel char float ... f loat
panel char float ... f loat name
jump name face − > name2 face2
jump name face < − > name2 face2
neighbors panel neigh1 neigh2 ...
unbounded diffusion face species amount pos0 pos1 ... posdim−1

end surface

7.8. Rates of surface interactions

For an interaction to occur between a solution-state molecule and a surface, the molecule has to
(1) contact the surface and (2) interact based on some probability. There are subtleties both in the
determination of contacts and in the calculation of these probabilities.

Starting with the contacts, a molecule clearly contacted a surface during the preceding time step
if it ended up across the surface from where it began, which I’ll call a direct collision. It is also
possible for a molecule to start and end on the same side of a surface, but to have contacted the

52

7.8. Rates of surface interactions

surface at some point during the time step, labeled here as an indirect collision. The probability
of an indirect collision occurring is (Andrews and Bray, Phys. Biol. 2004)

exp

(
− l1l2
D∆t

)
Here, l1 and l2 are the perpendicular distances to the surface before and after the time step, D is the
diffusion coefficient, and ∆t is the time step. These indirect collisions are implemented in Smoldyn
for simulating absorption of molecules to the bounding walls of the system (the boundaries).

However, for interactions between diffusing molecules and all surfaces, Smoldyn only accounts
for direct collisions, thus ignoring the indirect collisions. This decreases the accuracy of Smoldyn
slightly but is done because indirect collisions were found to be difficult to code, computationally
demanding, and made essentially no difference to results.

The probability of interaction given that a collision has occurred is difficult to calculate. While
it is presented in a recent paper by Erban and Chapman (Phys. Biol. 4:16-28, 2007) for
adsorption interactions, their equation turns out to only be accurate in the limit of short time
steps. Thus, I found the necessary relationships between the adsorption, desorption, or transmission
coefficients and the corresponding adsorption, desorption, and transmission probabilities. They are
implemented in the SurfaceParam.c source code file of Smoldyn and have been thoroughly tested.
I plan to write these algorithms up and submit them for publication during the next few months.

The adsorption coefficient, κ has units of length/time. The product κc, where c is a concentration
(units of length−3), is the adsorption rate in molecules adsorbed per unit of time, per unit of surface
area. If the surface is in equilibrium with the solution, where there is a sticking coefficient of κ,
and an unsticking rate of k, then the equilibrium surface density of molecules is

Csurface =
κ

k
Csolution

Surface sticking rates were tested with the example file stickrate.txt. Here, a collection of molecules
diffuses freely in solution, but sticks with rate 0.5 on one side. This situation can be solved
analytically as well from equations in Crank, allowing for a good comparison. Comparison between
simulation and theory are shown in the figure below.

Figure 7.1.: Output from stickrate.txt, showing quantitatively accurate adsorption.

Results from example stickrate.txt, shown in red, are compared with the analytic solution for
the sticking rate. The left panel shows the total number of molecules stuck to the surface. The
right panel shows the average sticking rate with a 5 time unit averaging window, with comparisons
to the expectation sticking rate shown with a solid line and the 1 standard deviation range shown
with dashed lines.

53

7. Surfaces

7.9. Simulating effective unbounded diffusion

The example files in S7 surfaces/unbounded diffusion illustrate and verify the use of a partially
absorbing bounding surface to simulate effective unbounded diffusion. These files use the Smoldyn
file sphere.txt, which describes a sphere; I created it by using Mathematica to define a sphere,
triangulate it, and save it as a “wrl” (Virtual Reality Modeling Language) file. Then, I used
the wrl2smol utility program to convert it to the Smoldyn-readable file sphere.txt. Other
Smoldyn configuration files specify either one or multiple emitters within this sphere and then
save concentration line profiles as functions of time. The theoretical concentration distributions for
these situations is expressed with a slight extension of eq. 3.5b from Crank, which leads to

C(r) =
∑
i

qi
4πD|r− ri

erfc
|r− ri|
2
√
Dt

Here, C(r) is the concentration at position r, qi is the emission rate of source i, D is the diffusion
coefficient, ri is the location of source i, and t is the time since the sources started emitting. At
steady-state, this concentration equation simplifies to

C(r) =
∑
i

qi
4πD|r− ri

The figure below shows results from the emitter1.txt Smoldyn simulation, in which an emitter at
location r1 = (−4.5, 0, 0) microns emits q1 = 500 molecules per second, these molecules have a
diffusion coefficient of D = 3µm2/s, and the system is surrounded by a triangulated sphere that is
centered at the origin and has radius 10 microns. Absorption to this sphere was set to make the
molecules diffuse as though the system were unbounded. Close agreement between simulation and
theory show that the algorithm works well.

Figure 7.2.: Output from emitter1.txt, showing quantitatively accurate effective unbounded
diffusion.

The left panel shows a snapshot from example emitter1.txt where it is seen that the emitter
center is somewhat left of the sphere center and the sphere is triangulated. The right panel shows
line profiles across the middle of the sphere, from (-10,0,0) to (10,0,0) at times t = 0.3 s (blue) and
t = 100 s (red), with simulation data shown with points and theoretical results, from the equations
above, in solid lines.

54

8. Reactions

8.1. Reaction basics

There are three types of chemical reactions in Smoldyn: zeroth order, first order, and second order,
where the order is simply the number of reactants. Synonyms for the latter two are unimolecular
and bimolecular reactions. In addition, Smoldyn simulates a couple of additional interaction types
using reactions; these are conformational spread reactions and excluded volume reactions, both of
which are described below.

With zeroth order reactions, there are no reactants at all. Instead, products appear spontaneously
at random locations in the system volume (or within a compartment) at a roughly constant rate.
This is unphysical because particles are being created from nothing. However, since Smoldyn
explicitly ignores many chemical species, the assumption here is that some unmodeled chemicals
are being converted into the zeroth order product. Thus, it is assumed that there is a legitimate
underlying chemical reaction that produces the products that are seen, but it just isn’t part of the
model. (At least, this is the typical use of zeroth order reactions; using them to model the magical
production of matter is fine too.)

First order reactions involve the conversion of one molecular species into another. This includes
spontaneous conformational changes of proteins and chemical rearrangements of small molecules.
Also, many reactions are pseudo-first order, meaning that one of two reactants has a sufficiently
constant concentration and distribution that it can be left out of the model and its effect is lumped
into the rate constant of a first order reaction. Protein phosphorylation by ATP is a good example
of this. In Smoldyn, reactants of first order reactions have a certain probability of converting to
products at each time step.

Second order reactions occur when two reactants collide and react (conformational spread
reactions are an exception, as described below). In Smoldyn, a reaction radius is defined for each
pair of molecular species. For those that do not react with each other, the reaction radius is 0. For
those that can react, the reaction radius is some small distance on the order of the molecular radii,
with values that increase monotonically with the standard mass action reaction rate. To simulate
each time step, molecules are first diffused and then, typically, all reactant pairs that are closer
than their reaction radii are reacted. Thus, the stochasticity in simulated bimolecular reactions
arises solely from diffusion and not from the reaction step of the algorithm. It is also possible for
the reaction probability upon collision to be some value less than one if desired, which can be useful
for adjusting the extent to which a reaction is diffusion- or activation-limited.

If a reaction has multiple products, they are usually all added to the system at the same point.
They can also be separated from each other by a small amount, called the unbinding radius if there
are two products, which reduces the likelihood of their immediate recombination in a new reaction.
This recombination is called a geminate recombination.

It is possible to specify that a reaction should only occur within a spatial compartment (defined
below), or if one of the reactants is bound to a specified surface. For example, it is possible to
declare that a zeroth order reaction should only produce product within a specific compartment, or
that a first order reaction is only active when the reactant is within the specified compartment. In
many cases, these rules are unphysical, although they can be very useful for treating interactions

55

8. Reactions

with spatially localized unmodeled chemical species. These restrictions can slow down simulations,
so only use them if they are needed.

Conformational spread reactions are only intended to be used with stationary reactants and
are only permitted in reactions with two reactants and two products. A conformational spread
reaction is possible if the reactants are closer together than the conformational spread radius,
which is analogous to the binding radius of normal second order reactions (although its value is
constant, regardless of the time step). For a conformational spread reaction, the reaction rate has
units of inverse time, as it is for a first order reaction. If a reaction occurs, the first entered reactant
is replaced by the first product, and the second reactant with the second product.

Excluded volume reactions use the reaction concept to simulate excluded volume interactions.
Here, the typical reaction is of the form A + B→ A + B, with the “binding radius” set to the sum
of the physical molecular radii and the product placement type set to “bounce”. There are several
options for simulating these reactions. The default method (as of version 2.73) is called the overlap
method. Here, if molecules are found to be closer than their binding radius after diffusion, then the
distance by which they are closer is added to the binding radius to compute the new separation.
The molecules are separated by this amount, while keeping the molecule centers on the same line
as they were on before they were moved. A different method, and the one that was recommended
between versions 2.41 and 2.72, is called the reflection method. Here, if molecules are found to be
within a binding radius after diffusion, their positions are recomputed by reflecting the molecules
off of each other based upon their straight-line trajectories during the course of the time step; the
collision point is at the position along the trajectories where the center-to-center distance equals
the binding radius. See the discussion in section 8.14 for the relative merits of these methods.

Each molecule has a serial number that can be used to uniquely identify it. In most reactions,
the reactants are simply removed from the system and the reaction products are new molecules
with new serial numbers. However, this is not the case for conformational spread and excluded
volume reactions because the reactants and products are conceptually the same molecules, so these
products have the same serial numbers as the reactants. It can also be helpful to maintain serial
numbers in other situations, such as for single molecule tracking. In these situations, use the
reaction serialnum statement to define rules for the product serial number assignments.

8.2. Defining reactions

To define a reaction, enter the statement reaction, followed by the reaction name, the reaction, and
the rate constant. Here are some examples:

reaction r1 A + B -> C 10

reaction bind receptor(up) + ligand(fsoln) -> complex(up) 1

reaction ingest complex(up) -> receptor(up) + ligand(bsoln) 5

reaction tca 0 -> ATP 100

reaction decay fluorophore(all) -> 0 0.01

For molecule states that are not specified, as in the first example above, it is assumed that
the reaction only applies to molecules that are in solution. Reactions that only occur in specified
compartments are entered in the same way, but with the reaction cmpt statement. Versions of
Smoldyn prior to 1.82 allowed reactions to be entered in definition blocks; this is still permitted for
backward compatability, but is discouraged because this format is not being maintained and may
be eliminated in future versions.

For most applications, the reaction statement is sufficient for entering the reaction rate.
However, other methods are possible as well. It is possible to leave the rate constant off of the

56

8.3. Statements about reactions

reaction line and enter it separately with the statement reaction rate. The reaction rate is
the macroscopic reaction rate, which is converted into parameters that Smoldyn can use for the
simulation. For zeroth order reactions, the reaction rate is converted to the average number of
molecules that should be added to the entire simulation volume at each time step. To enter this
internal value directly, use the statement reaction production. For first order reactions, the
reaction rate is converted to the probability that a reactant molecule will react during one time
step. This can be entered directly with the statement reaction probability. For second order
reactions, the reaction rate is converted into a reaction binding radius, which can be entered directly
with binding radius.

If a reaction has multiple products, they are usually placed at the location where the reaction
was determined to have occurred. However, offsets from the reaction location are possible as well,
which are necessary for reversible reactions so as to avoid certain geminate recombinations. Offsets
can be entered directly or can be calculated by Smoldyn in many different ways. All of them are
entered with the product placement statement.

Conformational spread reactions are a special type of bimolecular reactions. For these, there
is a domain of interaction, which is entered with the statement confspread radius; this also
specifies that the reaction uses conformational spread. Reaction rate constants for conformational
spread reactions have units of inverse time, like a first order reaction rate constant. They indicate
the rate at which a reaction occurs, for reactants that are continuously closer to each other than
the conformational spread radius. As with first order reactions, this rate value is converted to a
reaction probability at each time step, and can be entered directly with the reaction probability

statement. The two products of conformational spread reactions are placed at the exact same
locations as the two reactants, using the same ordering of reactants and products as they are listed
with the reaction statement.

To simulate second order reactions with reaction probabilities that are not equal to one (called
the lambda-rho algorithm), you can set the reaction probability with the reaction probability

statement. Alternatively, you can set the reaction χ value, which is the ratio of the actual reaction
rate constant to the diffusion-limited reaction rate constant, using reaction chi.

8.3. Statements about reactions

The following table summarizes the statements about reactions.

Statement

reaction rname reactant1 + reactant2 − > product1 + product2 rate
reaction rname reactant1 + reactant2 < − > product1 + product2 ratefwd raterev
reaction compartment= cname rname reactant1 + reactant2 − > product1 + product2 rate
reaction surface= sname rname reactant1 + reactant2 − > product1 + product2 rate
reaction rate rname rate
confspread radius rname radius
binding radius rname radius
reaction probability rname prob
reaction chi rname chi
reaction production rname value
reaction serialnum rname rules list
product placement rname type parameters

57

8. Reactions

8.4. Reactions with a block format

Although now discouraged and deprecated, the block format for entering reactions is similar. The
block starts with the statement start reaction and ends with end reaction, between which only
instructions that are relevant to reactions are allowed. The first statement within a reaction block
is order to define the reaction order of this block. The max rxn statement used to be required
next, but is no longer functional as of version 1.82. Basic reactions are entered with a reactant

statement, a rate statement, and a product statement. It is also possible to enter the internal
value that Smoldyn uses with rate internal. It is possible to turn states on or off with the permit
statement. If there are multiple products, and if these products can react with each other (most
often a reversible reaction), then Smoldyn may need some information about the product unbinding
radii, which is entered with the product param statement. It is discussed at length below.

Conformational spread reactions are slightly different. Enter the conformational spread radius
with the confspread radius statement and the reaction rate (which is analogous to a first order
rate) with rate. This rate value is converted to a reaction probability at each time step. To enter
the latter value directly, do so with the probability statement. The rate internal statement is
ignored.

8.5. Zeroth order reactions

Zeroth order reactions have no reactants and yet produce products at a rate that is constant except
for stochastic fluctuations. They can be used to simulate the production of molecules that are of
interest from sub-systems that are not of interest and thus are not explicitly part of the model.
As mentioned above, zeroth order reactions have not proven to be particularly useful. The zeroth
order reaction 0 → A proceeds according to the mass action rate equation

d[A]

dt
= k

k is the reaction rate constant. Solving for the number of A molecules in volume V as a function
of time yields the deterministic solution

n(t) = n(0) + kt

n(0) and n(t) are the initial and time-dependent numbers of A molecules. There are also fluctuations
due to the stochastic nature of chemical processes. Smoldyn assumes that each molecule created in
a zeroth order reaction is created independently of each other, which allows Poisson statistics
to be used. As an example of a limitation, this is not a perfect description of biochemical
protein production because that involves sequential stochastic DNA transcription followed by many
relatively rapid mRNA translations, thus leading to stochastic bursts of protein production.

Zeroth order reactions were tested with the file zeroreact.txt. The reaction portion of the
configuration file is

reaction slow 0 -> red 0.001

reaction med 0 -> green 0.01

reaction fast 0 -> blue 0.1

As seen in the figure below, simulation results conform closely to corresponding theoretical results,
using a wide range of reaction rates. As expected, stochastic deviations from the deterministic
theoretical predictions are seen.

58

8.6. Unimolecular reactions

Figure 8.1.: Output from zeroreact.txt, showing quantitatively accurate zeroth order reactions.

This shows zeroth order reaction molecule production with data simulated from the example file
S8 reactions/zeroreact.txt. Shown are the numbers of molecules produced as a function of time
with three different production rates along with the deterministic theory for how many molecules
would be expected.

8.6. Unimolecular reactions

Order 1 reactions follow the general reaction equation A→ B. The mass action kinetics for the loss
of reactant are described with the differential equation

d[A]

dt
= −k[A]

where k is the first order reaction rate. This is solved to yield the deterministic solution for the
number of A molecules as a function of time,

n(t) = n(0)e−kt

n(0) is the number of A molecules at time 0 and n(t) is the number at time t.

The example file S8 reactions/unireact1.txt was used to check unimolecular reaction rates using
a wide range of reaction rates. The reaction portion of the configuration file is

reaction slow red -> 0 0.1

reaction med green -> 0 1

reaction fast blue -> 0 10

As seen in the figure below there is good agreement between simulation and theory. As always,
stochastic fluctuations are apparent, which is particularly true when there are few molecules.

First order reactions in which a reactant can react through multiple possible pathways requires
slightly more complicated calculations for the reaction probabilities. However, the mass action
differential equation, shown above, is unchanged. This situation was tested with the configuration
file unireactn.txt. The reaction portion of the configuration file is

reaction r1 A -> A + B 0.1

reaction r2 A -> A + C 0.05

reaction r3 A -> A + D 0.01

59

8. Reactions

The system is started with only A molecules, so the theoretical number of A molecules as a function
of time is

nA(t) = nA(0)e−(kB+kC+kD)t

The number of B molecules as a function of time is

nB(t) = nA(0)
kB

kB + kC + kD

[
1− e−(kB+kC+kD)t

]
Analogous equations hold for C and D. Simulation results closely matched these theoretical
equations, as shown in the figure below.

Figure 8.2.: Output from unireact1.txt and unireactn.txt, showing quantitatively accurate first
order reactions.

The panel on the left shows results from the configuration file unireact1.txt. First order reactions
occur at rates that are in good agreement with theory over a wide range of rate values. The panel
on the right shows results from the file unireactn.txt. Again, there is good agreement with theory.

8.7. Bimolecular reactions

Bimolecular reactions have the generic reaction equation A + B → C, for which the mass action
kinetics are described by the deterministic differential equations

d[A]

dt
=
d[B]

dt
= −d[C]

dt
= −k[A][B]

The reaction rate constant, k, is only actually constant if: (i) the reaction kinetics are purely
activation-limited, or (ii) the reaction has proceeded long enough that a steady-state reactant
distribution has formed.

This equation is not quite as trivial to solve as prior ones were. With the condition that there
are the same numbers of A and B molecules initially, the solution for the number of A molecules
(or B molecules) as a function of time is

n(t) =

(
1

n(0)
+
kt

V

)−1

As before, n(0) is the initial number of A or B molecules, n(t) is the number of A or B molecules
as a function of time, k is the reaction rate constant and V is the volume of the system. This
was tested with three different reaction rates with the configuration file reactAB.txt, for which the
reaction portion of the file is

60

8.8. Reactions with identical reactants

reaction slow As + Bs -> Cs 1

reaction med Am + Bm -> Cm 10

reaction fast Af + Bf -> Cf 100

The Smoldyn diagnostics output shows how these different reaction rates are converted into
simulation parameters. They are converted into binding radii, which is small for the slow reaction
and large for the fast reaction. Because the reaction kinetics depend on the ratio of the reactant rms
steps lengths to the binding radii, the slow one has relatively long steps compared to the binding
radius and thus behaves as though it is activation-limited. In contrast, the fast reaction has short
rms step lengths compared to the binding radius and so behaves as though it is diffusion-limited.
Shortening the simulation time step would make all of these more diffusion-limited.

Activation-limited reactions follow the mass action kinetics shown in the equations for all times.
Thus, the slow and medium reaction rate simulations agree well with the mass-action theory, as
shown in the figure, below. In contrast, the diffusion-limited simulation does not agree with the
mass-action theory. This is because the simulation starts with molecules randomly distributed
whereas the analytical result assumes a steady-state distribution. However, after enough time has
passed for a steady state reactant distribution to be formed, it is shown that the simulated results
agree well with the analytical results (orange line in the figure).

Figure 8.3.: Output from bireactAB.txt and bireactAA.txt, showing quantitatively accurate second
order reactions.

The panel on the left shows reactant numbers for the reaction A + B → C for three different
reaction rates and with equal initial numbers of A and B molecules. The panel on the right is similar
but for the reaction 2A → C. Light black lines are solutions to the deterministic steady-state mass
action rate equations. Deviations arise for the faster reactions (blue lines) because those start far
from steady-state. Light orange lines are the steady-state theory, starting with time 10 rather than
0, so as to start at times when reactants are closer to steady-state distributions.

8.8. Reactions with identical reactants

Although there are no conceptual or simulation algorithm differences for bimolecular reactions in
which two reactants are the same, there are a few quantitative differences. Consider a situation
with 1000 A molecules and 1000 B molecules. Despite the fact that each A molecule has about
1000 potential collision partners, whether the reactants are A + A or A + B, there are twice as
many A-B collisions as A-A collisions. This is because each A-A pair can be counted in either of
two ways, but is still only a single possible collision. To achieve the same reaction rate for A +

61

8. Reactions

A reactants as for A + B, despite the fact that there are fewer collisions, Smoldyn uses a larger
binding radius for the former.

The analytical solution for the number of A molecules as a function of time is also slightly
different from before,

n(t) =

(
1

n(0)
+

2kt

V

)−1

The reaction description portion of the configuration file S8 reactions/bireactAA.txt is

reaction slow As + As -> C 1

reaction med Am + Am -> C 10

reaction fast Af + Af -> C 50

Results are similar to those seen before. Simulation results agreed well with the analytical equations
if the reaction is activation-limited or once the reactant distributions have reached steady-state,
but agreement is not good for diffusion-limited reactions away from steady-state. It should be
emphasized that these discrepancies are not errors by Smoldyn, but are quite the opposite: they
are approximations made in the steady-state equations which people are used to making but which
are nevertheless incorrect, which are being compared to accurate simulations by Smoldyn.

8.9. Diffusion-limited reactions

Diffusion-limited reactions can be simulated well by Smoldyn. The example file bireactABB.txt
again simulates the reaction A + B → C, but now with a lot more B molecules than A ones, and
with a time step that is sufficiently short that the reaction simulates as though it is diffusion-limited.
As is shown in the figure below, results conform closely to the Smoluchowski prediction for this
reaction.

Figure 8.4.: Output from bireactABB.txt, showing accurate diffusion-limited reactions.

This example shows diffusion-limited bimolecular reactions from the configuration file
bireactABB.txt, which simulates the reaction that is described in Figure 7 of Andrews and Bray,
2004. The left panel shows the number of surviving A molecules as a function of time with
comparison to the time-dependent Smoluchowski equation. The right panel shows the reaction
rate per A molecule per time unit as a function of time along with the Smoluchowski prediction
with the solid black line and predicted fluctuations with the dashed lines.

62

8.10. Reversible reactions

8.10. Reversible reactions

Reversible reactions, where at least one has multiple products, involve geminate recombination
issues, as discussed below. The accuracy of reversible reaction rates using the
default reverse parameter type and parameter was investigated with the configuration file
S8 reactions/equil/equil.txt. Here, an equilibrium is set up for the reaction A + B ↔ C.

From standard chemistry, the equilibrium constant is related to the ratio of product to reactant
concentrations and to the ratio of the forward to reverse rate constants,

K =
nCV

nAnB
=
kf
kr

where V is the total system volume. The configuration file equil.txt starts with equal numbers
of A and B molecules and no C molecules. Using the above equation and this starting point, the
solution for the equilibrium number of A molecules is

nA =
−V +

√
V 2 + 4KnA(0)V

2K

where nA(0) is the initial number of A molecules. It was verified that the simulation result
approached this value.

Figure 8.5.: Output from equil.txt, showing accurate reversible reactions and equilibrium.

This figure shows the equilibrium result from example file S8 reactions/equil/equil.txt.

8.11. Multi-step reactions

Many biochemical models include reactions that do not fall neatly into the 0th, 1st, or 2nd order
reaction categories, but are instead complex reactions that include multiple elementary steps.
Whereas these complex reactions can be well-defined for models that are either deterministic or
non-spatial, they simply don’t make sense when individual molecules are modeled. Thus, to include
them in a Smoldyn model, one has to explicitly define each of the steps.

Taking the Michaelis-Menten reaction as an example, consider substrate S, enzyme E, and
product P. The full reaction system is

All three of these reactions, along with the enzyme-substrate complex ES, need to be defined in
a Smoldyn file. Of course, this means that you also need to give the three reaction rate constants
k1, k−1, and k2. Assume you know the Michaelis constant KM and the maximum reaction velocity

63

8. Reactions

Vmax. As can be found in any biochemistry textbook, these are connected to the underlying rate
constants as

KM =
k−1 + k2

k1
Vmax = k2[E]0

where [E]0 is the total enzyme concentration. These two equations are not sufficient to solve for
the three rate constants, so let us define the unitless reaction efficiency ratio, r, as the fraction of
ES that goes to P,

r =
k2

k−1 + k2

This value can range between 0 and 1, where small values represent rapid equilibration between E,
S, and ES, and high values represent rapid reaction of ES to P. Typical Michaelis-Menten analyses
assume the former situation, so we might guess that r is 0.1. Solving these equations for the reaction
rate constant yield:

k1 =
Vmax

[E]0KMr
k−1 =

Vmax(1− r)
[E]0r

k2 =
Vmax

[E]0

Other multi-step reactions can be broken down to elementary reactions in a similar manner. The
need to include additional assumptions, as we did here with r, is typical when converting from a
low-detail reaction rate equation to a high-detail reaction mechanism.

8.12. Reaction networks

The reaction types presented above can be combined to create essentially unlimited varieties of
reaction networks. A particularly simple one is shown here as an example. It is the classic
Lotka-Volterra reaction network, which was originally designed to explain observed oscillations
in ecological predator-prey systems but is also analogous to many natural biochemical oscillators.
The terminology used here borrows from the ecology application, although all numbers were chosen
solely to make for an interesting simulation result. The complete file S8 reactions/lotvolt/lotvolt.txt
is:

Simulation file for Lotka -Voltera reaction

graphics opengl

graphic_iter 5

dim 3

names rabbit fox

max_mol 20000

molperbox 1

difc all 100

color rabbit 1 0 0

color fox 0 1 0

display_size rabbit 2

display_size fox 3

molecule_lists rlist flist

mol_list rabbit rlist

mol_list fox flist

time_start 0

time_stop 100

64

8.13. Conformational spread reactions

time_step 0.001

boundaries x -100 100 p

boundaries y -100 100 p

boundaries z -10 10 p

mol 1000 rabbit u u u

mol 1000 fox u u u

cmd b pause

#output_files lotvoltout.txt

#cmd i 0 5 0.01 molcount lotvoltout.txt

reaction r1 rabbit -> rabbit + rabbit 10

reaction r2 rabbit + fox -> fox + fox 8000

reaction r3 fox -> 0 10

end_file

This involves several statements that make the simulation run efficiently. Graphics are only
displayed every 5 iterations, the simulation is set up with only 1 molecule per virtual box, and the
rabbit and fox molecules are stored in separate molecule lists. Results from this file are shown in
the figure below.

Figure 8.6.: Output from lotvolt.txt, showing a simple reaction network with Lotka-Volterra
dynamics.

These figures show results from Lotka-Volterra simulation. The first panel shows of snapshot of
the simulation after it has run for long enough for the regular boom-and-bust pattern to develop.
Red dots are “rabbits” and green dots are “foxes”. The next panel shows the numbers of “rabbit”
and “fox” molecules as a function of time, with the same colors, again illustrating the boom-and-
bust pattern. The panel on the right is a phase portrait of the data shown in the center; oscillations
lead to cycles in the phase portrait and the initial large spike is seen as the large diameter cycle.

8.13. Conformational spread reactions

Currently, Smoldyn only allows second order reactions that have exactly two products to be declared
a conformational spread reaction. Defining them as a conformational spread reaction, which is done
with the confspread radius statement, implies a few things. Typically, the diffusion coefficients
of both reactants are zero, although this is not required. The reaction rate constant that is entered

65

8. Reactions

is a first order rate constant, meaning that it has units of inverse time. It is interpreted as the rate
at which a reaction will occur, given that both reactants are continuously closer to each other than
the conformational spread radius. Finally, the products of a conformational spread reaction are
placed in the exact same locations as the reactants, and in the spots that correspond to the order
in which the reactants and products were listed in the configuration file. For example, consider the
conformational spread reaction defined with the statements

reaction rxn1 A + B -> C + D 10

confspread_radius rxn1 5

This states that a conformational spread reaction can occur between any A and B molecules that
are closer than 5 distance units apart. At each time step, the probability of its occurring is found
from the reaction rate of 10 inverse time units according to the same formulae that were described
above for unimolecular reactions. If it occurs, the A molecule will be replaced by a C molecule and
the B molecule will be replaced with a D molecule.

Conformational spread processes are frequently symmetric such that activity can be spread from
an active molecule to its neighbor, and also inactivity can spread from an inactive molecule to its
neighbor. This can be entered in Smoldyn with a pair of conformational spread reactions:

reaction rxna inactive + active -> active + active 10

reaction rxni active + inactive -> inactive + inactive 10

confspread_radius rxna 5

confspread_radius rxni 5

This will yield a warning in Smoldyn about there being multiple bimolecular reactions listed with
the same reactants, but it is the right way to list these symmetric effects. In this example, the
convention was followed that the latter reactant (and latter product) is the neighbor molecule,
while the former reactant is the one that changes state.

If a molecule has simultaneous conformational spread interactions with more than one other
molecule, the simulated reaction rates may be too low; this effect is reduced to zero for short time
steps and increases with longer time steps. Consider a potential reaction with two reaction channels
and the probability of it happening by either channel individually is p. When the two channels are
considered sequentially, the probability for the first happening should be p, while the probability for
the second should p/(1p), because it is the conditional probability of the second reaction happening,
given that the first one did not happen. However, Smoldyn uses probability p for all conformational
spread reaction channels, which leads to a reaction rate that is too low. While this identical effect
is addressed correctly for first order reactions and for state conversions of surface-bound molecules,
it is not addressed for conformational spread reactions because it is nearly impossible for Smoldyn
to figure out how many reaction channels are available for any particular conformational spread
reaction.

Conformational spread reactions were tested with the configuration file confspread.txt. It
simulates two reactions:

reaction back green -> red 10

reaction fwd red + blue -> green + blue 10

confspread_radius fwd 5

While it is simplistic for most conformational spread situations, it leads to a simple equilibrium
between red and green molecules which allows for easy analytical calculations of the correct
outcome. If each red/green molecule is within a conformational spread radius of one blue molecule
(accomplished by setting the conformational spread radius to 3), the forward and reverse rates
are each 10 and an equal number of red and green molecules should be observed. On the other
hand, an increased conformational spread radius (5, as shown above) implies that each red/green

66

8.14. Excluded volume reactions

molecule is within reach of two blue molecules, so the forward rate doubles, as does the equilibrium
constant. Both of these behaviors were confirmed. As described above, conformational spread
reaction probabilities that were greater than about 0.05 for each reaction led to conformational
spread reaction rates that were observed to be slightly too low for the case in which each red
molecule was within the conformational spread radius of two blue molecules.

Figure 8.7.: Output from confspread.txt, showing accurate conformational spread interactions.

This figure show output from confspread.txt configuration file. There are conformational spread
reactions between blue molecules and red molecules, which convert red to green; reversion is a
simple reaction. The panel on the right shows the average probability of molecules being in their
red states, for a situation in which rate constants are equal for the forward and reverse reactions,
but each red/green molecule is within a conformational spread radius of two blue molecules, thus
doubling the red → green reaction rate.

8.14. Excluded volume reactions

Smoldyn can treat molecules as though they have excluded volume using the same reaction concept
that was developed for bimolecular reactions. The user specifies the collision radius (using the
binding radius statement) for each pair of species that is supposed to respect each others’ excluded
volume and then makes this an excluded volume reaction with the product placement statement,
with the bounce option. If molecules of those two species end up within their collision radius
at the end of a time step, they are then moved apart. The reactants and products may be the
same molecular species, in which case the molecules are simply pushed apart. They can also
be different species. Molecules maintain their serial numbers. There are several options for the
product placement parameter value. Setting it to a positive value (which should be larger than
the binding radius) causes the two products to be placed at this distance apart, along the same
vector as the molecules were on before they were moved apart. Setting it to -1 selects the “overlap
method”, which is also the default method and the approach that I recommend; here, the products
are separated by the binding radius plus the distance that the reactants had been inside of the
binding radius. This separation is along the vector that separated the reactants. Setting it to -2
selects the “reflection method”, which I do not recommend. Here, the molecules bounce ballistically
off of each other. In all cases, the reaction rate value is largely meaningless for excluded volume
reactions.

If molecules are not supposed to pass by each other, which can be simulated using excluded
volume reactions and a one-dimensional system, then it is important to make the excluded volume

67

8. Reactions

binding radius significantly larger than the rms step lengths of the molecules. Because molecules
move during diffusion with Gaussian-distributed displacements, and Gaussians have long tails, it
is likely to be very difficult to ensure that absolutely no molecules cross that should not.

Several examples illustrate excluded volume reactions, all of which are in the S8 reactions/bounce
directory. In bounce.txt, molecules are confined to a line and maintain their ordering. The
configuration file statements that declare the excluded volume reactions are:

reaction rxn1 red(up) + green(up) -> red(up) + green(up)

binding_radius rxn1 1

product_placement rxn1 bounce -2

A second example, crowding.txt, shows crowding in a 2D system. Their outputs are shown in
Figure 8.8. In the former, red and green molecules, both of which are confined to the diagonal line,
bounce off of each other. This has the result that the ordering of red and green molecules does not
change during the simulation. The latter file shows that this crowding method works even with
relatively high molecule densities. These molecules clearly do not overlap each other. During the
simulation, molecules diffuse within the confines set by their neighbors.

Figure 8.8.: Output from bounce.txt and crowding.txt, showing excluded volume for surface-bound
and solution phase molecules.

I developed the reflection method in my 2017 paper, where I showed that it yields a more accurate
distribution of product locations after a single collision than the overlap method. This suggested
that it was a superior algorithm. Also, it produced an accurate radial distribution function for hard
spheres (in contrast to the SpringSaLaD software, which produced substantially incorrect results),
again supporting its use. However, I reinvestigated its quantitative accuracy in 2023 (for version
2.73; files are called crowding3D.txt, crowding3D.nb, and similar) and found that the overlap
method is likely to be substantially better, despite its poorer performance for the single-collision
product locations.

The first test looked at the hard sphere radial distribution function. The overlap method yielded
very slightly better results at all time step lengths (left panel of Figure 8.9). The second test
looked at diffusion rates within the same crowded system (right panel of Figure 8.9). The reflection
method yielded diffusion coefficients that were about 2.3 times faster than those from the overlap
method, for all time step lengths; importantly, this means that these methods do not converge
to the same result in the limit of short time steps, implying that one or both of them does not
become exact in this limit. Both yielded excessively fast diffusion at long time steps (e.g. the
rms step length is greater than about 0.14 times the molecule radius), with values that were even
greater than the diffusion coefficient entered into the simulation; this shows that crowding led to
accelerated diffusion, not slowed diffusion, which is impossible. Shorter time steps led to lower
measured diffusion coefficients, which are more reasonable, and had a transition point at around
the rms step length being 6% of the molecule radius; time steps that were longer than this led to

68

8.15. Binding and unbinding radii

different results but time steps that were shorter than this led to minimal improvement. I measured
the effective diffusion coefficient using the meansqrdisp command, which outputs both the 〈r2〉 and
〈r4〉 averages. Assuming Gaussian distributions, which is what one would expect for diffusion,
including in crowded systems, 〈r2〉 = 6Deff.t and 〈r4〉 = 60D2

eff.t
2, allowing Deff. to be computed

from either statistic. Both statistics yielded essentially identical results for the overlap method,
indicating a Gaussian distribution. However, the 〈r4〉 value led to much larger effective diffusion
coefficients than the 〈r2〉 value did for the reflection method, indicating a broader than Gaussian
distribution. This is incorrect, leading me to believe that the reflection method is inaccurate. I
don’t know if the algorithm itself is fundamentally inaccurate, or if molecules are “skating” through
the system; this arises when a reflected molecule gets placed on top of another molecule, which
then repeats over and over again and produces fast motion. In any case, the reflection method is
clearly inaccurate, so I recommend the overlap method.

Figure 8.9.: (Left) Radial distribution function for 2.5 nm radius hard spheres, with theory in black
and simulation in red (overlap method, time step is 0.00005 microseconds, 40% volume
occupancy). (Right) Effective diffusion coefficients for the same hard sphere crowded
system computed as a function of time step. Red is overlap method, blue is reflection
method; circles are computed from 〈r2〉 and squares are computed from 〈r4〉 (circles and
squares overlap for the red symbols). The dashed line shows the diffusion coefficient
without any crowding.

8.15. Binding and unbinding radii

For every bimolecular reaction, Smoldyn has to calculate the correct binding radius from the
reaction rate that is given in the configuration file. Also, for every reaction that leads to
multiple products, Smoldyn has to determine the correct unbinding radius, using whatever product
parameter is supplied, if any. Product parameters are listed in the table, below. While these
binding and unbinding radii are well defined microscopic parameters (at least within the context of
the Smoluchowski model system that is simulated), the meanings of the experimental rate constants,
including those given in the configuration file, are not nearly as well defined. Instead, those rate
constants depend on the conditions under which they were measured. Smoldyn accounts for this by
attempting to guess the experimental conditions, using a process described here. If Smoldyn’s guess
is correct, the simulated reaction rates should exactly match the experimental rates (not including
edge effects, which are typically negligible unless one reactant is fixed at or near an edge).

The following table shows product parameters for reactions with multiple products.

Special product types
i irrev reaction is declared irreversible (σu = 0).

69

8. Reactions

a confspread conformational spread reaction (entered automatically for you).

Use these if reversible reactions were measured at equilibrium
p pgem probability of geminate reaction (φ).
x pgemmax maximum probability of geminate reaction (φmax).
r ratio unbinding radius relative to binding radius (σu/σb).
b unbindrad fixed length unbinding radius (σu).

Use these if reversible reactions were measured with all product removed as it was formed
q pgem2 probability of geminate reaction (φ).
y pgemmax2 maximum probability of geminate reaction (φmax).
s ratio2 unbinding radius relative to binding radius (σu/σb).
o offset fixed offset of products, rotationally randomized (σu).
f fixed fixed offset of products, not rotationally randomized (σu).

Either the single-letter code or the full word may be used to define the product parameter type,
although the latter is suggested for readability. The default type is pgemmax with a value of 0.2.

In all cases, Smoldyn assumes that rate constants were measured using an effectively infinite
number of reactant molecules, in an infinite volume, that were started well mixed and that then
were allowed to react until either an equilibrium was reached for reversible reactions, or a steady-
state reaction rate was reached for irreversible reactions. Only in these cases is mass action kinetics
correct and is the reaction rate constant actually constant. The precise experimental assumptions
are clarified with the following examples.

1. A + B → C

The rate constant is assumed to have been measured at steady state, starting with a well-
mixed system of A and B. No product parameter is required. At steady-state, the simulation
matches mass action kinetics.

2. X → A + B

There is no bimolecular reaction, so no binding radius is calculated. The default unbinding
radius is 0, although it is possible to define a different one. If the product parameter type is
pgem, pgem2, ratio, or ratio2, an error is returned due to the lack of a binding radius. If the
parameter type is not given or is irrev, pgemmax, or pgemmax2, the unbinding radius is set
to 0. If it is unbindrad, fixed, or offset, the requested separation is used. At steady-state,
the simulation matches mass action kinetics.

3. A + B ↔ C

If the reversible parameter is pgem, pgemmax, unbindrad, or ratio, the forward rate constant
is assumed to have been measured using just this system of reactions after the system
had reached equilibrium. The product parameter is used to yield the correct probability
of geminate recombination if possible, or the desired unbinding radius. In this case, the
simulation matches mass action kinetics at equilibrium. If the product parameter is pgem2,
pgemmax2, ratio2, offset, fixed, or irrev, then it is assumed that the forward rate constant
was measured at steady-state and with all C removed as it was formed, thus preventing any
geminate reactions. The unbinding radius is set as requested, using the binding radius if
needed. In this case, the simulated forward reaction rate is higher than requested due to
geminate rebindings.

70

8.15. Binding and unbinding radii

4. A + B ↔ C → Y

The second reaction is ignored for determining parameters for A + B. Instead, the first
reaction is considered as though the rates were determined experimentally using just the
system given in example 3. If the product parameter is pgem, pgemmax, ratio, or unbindrad,
the simulated reaction rate for the forward reaction A + B → C will be lower than the
requested rate because there are fewer geminate reactions than there would be with the
equilibrium system. Alternatively, it will be higher than the requested rate if the product
parameter is pgem2, pgemmax2, ratio2, offset, fixed, or irrev, because there are some
geminate reactions.

5. X → A + B ↔ C

The binding radius for the second reaction is treated as in example 1, without consideration of
the first reaction. The unbinding radius for the first reaction is found using the binding radius
of the second reaction. Here, product parameters pgem and pgem2 are equivalent, pgemmax
and pgemmax2 are equivalent, and ratio and ratio2 are equivalent. The actual reaction rate
for the second reaction, found with a simulation, will be higher than the requested value due
to geminate rebindings that occur after the dissociation of X molecules.

6. X → A + B ↔ C

The A + B↔ C binding and unbinding radii are treated as in example 3. Another unbinding
radius is required for the first reaction, which is found as in example 5, using the binding
radius from the second reaction. Mass action kinetics are not followed.

7. X ↔ A + B ↔ C

The binding radii and unbinding radii for each bimolecular reaction are found as in example
3, independent of the other bimolecular reaction. The simulated rates may be different from
those requested because of differing unbinding radii.

8. X → A + B → C, A + B → D

The binding radii for the two bimolecular reactions are each found as in example 1. The
unbinding radius for the first reaction cannot be determined uniquely, because the two forward
reactions from A + B are equivalent and are likely to have different binding radii. Smoldyn
picks the binding radius for the first forward reaction that is listed. Thus, if the product
parameter for dissociation of X is pgem, the requested geminate rebinding probability will be
found for the reaction A + B → C, but a different value will be found for the reaction A +
B → D.

9. C ↔ A + B ↔ C

This reaction scheme might represent two different pathways by which A and B can bind to
form an identical complex. However, Smoldyn cannot tell which reverse reaction corresponds
to which forwards reaction. Instead, for both determining the binding and unbinding radii,
it uses the first reverse reaction that is listed.

The general principle for calculating binding radii is that Smoldyn first looks to see if a reaction
is directly reversible (i.e. as in example 3, without any consideration of reaction network loops
or other possible causes of geminate reactions). If it is and if the reversible parameter is pgem,
pgemmax, ratio, or unbindrad, then the binding radius is found under the assumption that the
rate constant was measured using just this reaction, at equilibrium. If not, or if the reversible

71

8. Reactions

parameter is pgem2, pgemmax2, ratio2, offset, fixed, or irrev, then Smoldyn calculates the
binding radius with the assumption that the rate constant was measured using just that reaction
at steady-state and with all product removed as it is formed.

Unbinding radii typically require a reversible parameter (except as in example 2). If the parameter
is unbindrad, offset, or fixed, the requested unbinding radius is used. If it is irrev, the unbinding
radius is set to 0. Otherwise, it can only be calculated with the knowledge of the binding radius.
If the reaction is directly reversible, the binding radius for the reverse reaction is used. If it is not
directly reversible but the products can react, as in examples 5, 6, and 8, then the binding radius
for the first reaction that is listed is used.

8.16. Bimolecular reactions and surfaces

Does a bimolecular reaction occur if there is a surface between the reactants? This turns out to be
a somewhat complex question. The simple answer is that it does occur if the surface is transparent
to both molecular species and it does not occur if the surface is reflective or absorptive to both
molecular species. In principle, reactions should be possible across pairs of jump surfaces, although
they are not performed by the current Smoldyn version which treats jump surfaces as though they
are opaque with respect to reactions.

Smoldyn determines where the reaction location is using a weighted average of the reactant
diffusion coefficients. The reaction takes place only if both reactants can get to the reaction
position, considering any intervening surfaces. Absorption on the opposite side of a surface is
not worried about, the logic being that molecules are already in contact when a reactant traverses
the surface, and so opposite-side absorption is no more important than the reaction. For partially
transparent surfaces, reactions occur depending on the probability of transparency.

When molecules have excluded volume, which they do not in Smoldyn, even inert impermeable
surfaces can affect the local concentrations of chemicals. An obvious effect is that a molecule
cannot be closer to a surface than its radius, leading to a concentration of zero closer than that.
In a mixture of large and small molecules, Brownian motion tends to push the large molecules up
against surfaces while the small molecules occupy the center of the accessible volume, thus creating
more complex concentration effects. These effects do not occur when excluded volume is ignored,
as it is in Smoldyn, in which case surfaces do not affect local concentrations.

While surfaces do not affect concentrations of non-reacting molecules, they do affect reaction
rates. Consider the reaction A + B ? C, where A is fixed and B diffuses. If essentially all A molecules
are far from a surface, the diffusion limited reaction rate is found by solving the diffusion equation
for the radial diffusion function (RDF) with the boundary conditions that the RDF approaches 1
for large distances and is 0 at the binding radius (see the paper by myself and Dennis Bray titled
“Stochastic simulation of chemical reactions with spatial resolution and single molecule detail”).
This leads to the Smoluchowski rate equation

k = 4ıDσb

However, for an A molecule that is near a surface, an additional boundary condition is that the
gradient of the 3 dimensional RDF in a direction perpendicular to the surface is zero at the surface.
This makes the solution of the reaction rate sufficiently difficult that I have not attempted to solve
it, but the result is different from the simple result given above. This surface effect is an issue
whenever the A molecule is within several binding radii of a surface and is especially pronounced
when it is closer to the surface than its binding radius. For cases in which the A molecule is more
than one binding radius from the surface, B molecules are going to take longer than usual to reach

72

8.16. Bimolecular reactions and surfaces

the region between the A and the surface, leading to a decreased reaction rate. It is suspected that
the reaction rate decreases monotonically as the A molecule approaches and then crosses a surface.

A special case that can be solved exactly occurs when the A molecule is exactly at the surface,
such that half of the binding volume is accessible to B molecules and half is inaccessible. Now, the
RDF inside the system volume is identical to the RDF for the case when the A molecule is far from
a surface. The logic is to assume that this is true and to then observe that it already satisfies the
additional boundary condition. Using this RDF, the diffusive flux is half of the diffusive flux for an
A molecule far from a surface, because only half of the binding surface is exposed to the system.
Thus, the diffusion limited reaction rate for the situation in which a reactant is fixed exactly at a
surface is

k = 2πDσb

The situation changes some when simulation time steps are sufficiently long that rms step lengths
are much longer than binding radii. Now, the probability of a reaction occurring during a time
step is a function of only the binding volume. Thus, there are no surface effects at all when an A
molecule is fixed anywhere in the simulation volume that is greater than or equal to one binding
radius away from a surface. As the A molecule is moved closer to the surface, the reaction rate
decreases in direct proportion to the binding volume that is made inaccessible to B molecules. An
especially easy situation is that when the A molecule is exactly at the surface, the reaction rate
is half of its value when the A molecule is far from a surface, which is the same as the diffusion
limited result.

These results can be turned around to solve for the binding radius. If the reaction is diffusion
limited, the binding radius should double when a reactant is placed exactly at the surface to
maintain the same reaction rate. If it is activation limited, the binding radius should increase by
3
√

2 to maintain the same reaction rate. As usual though, the binding radius is more closely related
to the fundamental physical properties of the molecule than is the rate constant, so it is essential
to consider the experimental conditions that were used for measuring the rate constant.

In conclusion, reaction rates are reduced near surfaces and the effect is different for diffusion
limited and activation limited reactions. However, for both cases, and almost certainly for all cases
in between, the reaction rate is exactly half when an A molecule is fixed at a surface, compared to
when it is far from a surface. A few tests with Smoldyn using the files wallreact.txt, suggested that
these surface effects are likely to be minimal for most situations, although it is good to be aware of
their potential. The exception is that there are large surface effects when molecules are fixed with
a significant portion of the binding volume outside the simulation volume.

73

9. Compartments

9.1. Compartment basics

Compartments are regions of volume that are bounded by surfaces. In general, they do not include
their bounding surfaces. Compartments are useful for input or output and, as mentioned above,
zeroth and first order reactions can be made to be only active within specified compartments.
Compartments can also be moved around using various commands, thus providing support for
moving surfaces. In addition, compartments are used for communication with the MOOSE
simulator.

The inside of a compartment is defined to be all points from which one can draw a straight line to
one of the “inside-defining points” without crossing any bounding surface. For example, to create a
spherical compartment, one would define a spherical surface as the boundary and some point inside
the sphere (the center, or any other internal point) to be the inside-defining point. This definition
allows a wide variety of options. For example, it allows disjoint compartments and compartments
that are not inside closed surfaces. To set a sharp edge to a compartment, but one which does not
affect molecule diffusion, just add a surface that is transparent to all molecules but which serves as
one of the compartment’s bounding surfaces.

In addition, compartments can be composed from previously defined compartments using logic
arguments. This way, for example, a cell cytoplasm compartment can be defined as the region that
is within a cell compartment but that is not also within a nucleus compartment. Or, the region
that is outside of a cell can be simply defined as the region that is not inside the cell.

9.2. Defining compartments

The definition style for compartments is much like it is for other portions of the code. Compartment
statements for specific compartments are entered in blocks that start with start compartment and
end with end compartment. The compartment name, which is given after start compartment,
is used to start a new compartment definition, or to continue defining a previously started one.
Bounding surfaces and interior-defining points are added with the surface and point statements,
respectively. The compartment command, used within a compartment block, is used to define one
compartment in terms of others. Using this command one can, for example, define a compartment
as the union or the intersection of two previously defined compartments.

To state that molecules start in a compartment, use the compartment mol statement that was
listed in the molecules section. To read the numbers of molecules in a compartment, use the
commands molcountincmpt or molcountincmpt2. Following are excerpts from configuration files
that use compartments:

Compartment defined with surfaces and points

start_compartment middle

surface surf

point 50 75

point 50 25

point 75 50

75

9. Compartments

point 25 50

end_compartment

compartment_mol 500 red middle

Compartments defined with other compartments

start_compartment intersection

compartment equal left

compartment and right

end_compartment

start_compartment either

compartment equal left

compartment xor right

end_compartment

start_compartment outside

compartment equalnot left

compartment andnot right

end_compartment

compartment_mol 500 red intersection

compartment_mol 500 green either

compartment_mol 500 blue outside

These files are in the examples folder in S9 compartments. The first is called compart.txt and
the second is compartlogic.txt. They yield the following results:

Figure 9.1.: Output from compart.txt and compartlogic.txt, showing behavior of compartments.

This figure shows examples of compartments. In the left panel, green dots are the interior-defining
points and red molecules were added randomly to the compartment. In the right panel, each circle
was defined as a compartment and then the red, green, and blue molecule regions were defined with
logical combinations of the left and right compartments. For logically combining compartments,
the logical options are: “equal”, “equalnot”, “and”, “andnot”, “or”, “ornot”, or “xor”. These obey
the standard logical rules. Note that the sequence of statements matters. For example, the region
defined by A-andnot-B is the portion of A is that is not within B, whereas B-andnot-A is the
portion of B that is not within A.

76

9.4. Statements about compartments

9.3. Compartments and efficiency

To test whether a given point is within a given compartment, Smoldyn starts by computing a line
between that point and one of the interior-defining points. Smoldyn then tests whether this line
crossed any of the panels of any of the compartment’s bounding surfaces. If so, Smoldyn moves on
to the next interior-defining point and repeats. The procedure stops as soon as a line can be drawn
without crossing any surface panel, if that happens. This procedure is rapid for compartments with
one panel and one interior-defining point, but can become extremely slow for surfaces with many
panels and/or many interior-defining points. As a result, it is helpful to design compartments for
efficient simulation. Also, it’s best to avoid compartments if they aren’t needed. For example, don’t
use the reaction compartment statement if you don’t actually need the compartment testing.

9.4. Statements about compartments

The following table summarizes the statements about compartments.

Statement

max compartment int (optional statement)
start compartment name
surface surface
point pos0 ... posdim−1

compartment logic compart
end compartment

77

10. Simulation settings

10.1. Simulation settings basics

Several statements define how the simulation should be run. There are defaults for each of these
settings, so the user does not need to set them directly. However, they can be useful for optimizing
simulation performance. These settings include the random number generator seed, virtual boxes
that partition the simulation volume, and some settings for diffusion on surfaces.

The simulation volume is partitioned into an array of virtual boxes, each of which is the same
size and shape. In addition, each box that is on the edge of the simulation volume actually extends
out to infinity in that direction, such that every location in space, whether in the simulation volume
or not, is in some virtual box. These boxes do not affect the performance of the simulation, except
for allowing computational efficiencies that speed it up.

10.2. Random number seed

As a default, the random number generator seed is set to the time at which the simulation is started.
This is virtually certain to yield a unique random number sequence each time the simulation is run,
so no two simulations will be identical. However, it can also be useful to set the random number
generator seed, which can be done with the random seed statement. This statement can also be
used to set the random number seed to the current time.

Smoldyn uses the Mersenne Twister random number generator, which has become a standard
generator for many applications because it is fast and very high quality. Because Smoldyn uses
this method rather than built-in generators, Smoldyn simulations that are run with the same seed
produce the same results, regardless of the operating system or computer.

10.3. Virtual boxes

The box sizes can be left undefined, in which case a default is used, or they can be defined with
either the molperbox or boxsize statements. The former statement sets the box sizes so that the
average number of molecules per box, at simulation initiation, is close to the requested number.
Good numbers tend to be between 3 and 6, although more or fewer may be appropriate, depending
on how the number of molecules in the simulation is likely to change over time (the default box size
is computed for an average of 4 molecules per box). The boxsize statement requests the length of
one side of a box, which should be in the same units that are used for the boundary statements.
Either way, the boxes that are actually created are unlikely to exactly match the requested values,
but are sized to be as close to cubical as possible (or square for a 2-D simulation) and to exactly
fill the simulation volume.

Box sizes that are too large will cause slow simulations, but no errors. Warnings that say that
there are a lot of molecules or surface panels in a box are suggestions that smaller boxes may make
the simulation run faster, but do not need to be heeded. Box sizes that are too small may cause
errors. Several warnings can be generated for this, including that the diffusive step lengths are

79

10. Simulation settings

larger than the box size, etc. However, the only warning that really matters is if box sizes are
smaller than the largest bimolecular reaction binding radius. If this happens, some bimolecular
reactions are likely to be ignored, which will lead to a too slow reaction rate. If simulation speed
is important, it is a good idea to run a few trial simulations with different box sizes to see which
one leads to the fastest simulations.

The accuracy statement sets which neighboring boxes are checked for potential bimolecular
reactions. Consider the reaction A + B → C and suppose that A and B are within a binding
radius of each other. This reaction will always be performed if A and B are in the same virtual
box. If accuracy is set to at least 3, then it will also occur if A and B are in nearest-neighbor
virtual boxes. If it is at least 7, then the reaction will happen if they are in nearest-neighbor boxes
that are separated by periodic boundary conditions. And if it is 9 or 10, then all edge and corner
boxes are checked for reactions, which means that no potential reactions are overlooked. Overall,
increasing accuracy numbers lead to improved quantitative bimolecular reaction rates, along with
substantially slower simulations. If qualitative simulations are wanted, then lower accuracy values
are likely to be preferable.

10.4. Surface-bound molecule settings

Several settings affect simulation of surface-bound molecules, described here. The default settings
are nearly always good, although they can be modified if desired.

Molecules that are bound to a surface are given locations that are extremely close to that surface.
However, this position does not need to be exactly at the surface, and in fact it usually cannot be
exactly at the surface due to round-off error. The tolerance for how far a surface-bound molecule
is allowed to be away from the surface can be set with the epsilon statement.

When a surface-bound molecule diffuses off of one surface panel, it can sometimes diffuse onto
the neighboring surface panel. It does so only if the neighboring panel is declared to be a neighbor,
as described above in the surfaces section, and also the neighbor is within a distance that is set
with the neighbor dist statement. This value is set to an extremely small value by default, just
large enough to prevent round-off error, and generally should not need changing. In some cases,
moving a molecule to a point that is exactly on a panel edge can cause problems with round-off
errors, so it is actually moved just inside the edge by a distance that can be set by the margin
statement. Again, this should not need changing.

10.5. Statements for simulation settings

The following table summarizes the statements for simulation settings.

Statement Description

random seed int random number seed
accuracy float accuracy code, from 0 to 10
molperbox float target molecules per virtual box
boxsize float target size of virtual boxes
epsilon float for surface-bound molecules
margin float for diffusing surface-bound molecules
neighbor dist float for diffusing surface-bound molecules

80

11. Ports

11.1. Port basics

Ports are data structures that are used for importing and exporting molecules between a Smoldyn
simulation and another simulation. In particular, they are designed for the incorporation of
Smoldyn into MOOSE, but they could also be used to connect multiple Smoldyn simulations or for
other connections.

A port is essentially a surface and a buffer. Smoldyn molecules that hit the porting surface are
removed from the Smoldyn simulation and are put into the buffer for export. Once exported, they
are removed from the buffer. Also, molecules may be added to the Smoldyn simulation at the
porting surface by other programs.

11.2. Defining ports

Using the standard format, port statements are given in blocks that start with start port and
end with end port. A port name is declared after start port. The porting surface is specified
with surface and the active face of that surface is specified with face.

Also, in the definition of the surface that is to be used for porting (the surface has to be defined
first), one has to specify that the active face of the surface has action “port”.

11.3. Statements about ports

The following table lists statements about ports.

Statement

start port name
surface surface
face face
end port

11.4. Porting rate

Some care is required to make ports work accurately. In particular, a port behaves for a Smoldyn
simulation as an absorbing surface. The absorption rate depends on the simulation time step and
molecular rms step length, as I described in Andrews, Physical Biology, 2009.

81

12. Rule-based modeling with BioNetGen

12.1. Rule-based modeling basics

In many biochemical systems, proteins bind together into multimeric complexes and/or can be
modified with phosphates, methyls, or other moieties. Each possible complex or protein state needs
to be treated as a distinct chemical species in Smoldyn, as in many other simulators. However,
even a fairly small list of complexation or modification reactions can lead to a large number of
distinct species, and even more reactions that interconvert these species, making it impractical to
enumerate all of the species and reactions manually. The solution is rule-based modeling, in which
the user specifies the protein subunits and their binding rules, and then the software generates the
species and reaction lists.

Smoldyn offers two types of rule-based modeling. First, you can use wildcards, which are
explained in the Molecules chapter. Wildcards are very convenient but not good for complicated
reaction networks. Secondly, you can use Smoldyn’s BioNetGen module, which uses the BioNetGen
software. This software has been thoroughly validated and is widely used. BioNetGen generates the
entire reaction network at once, as opposed to “on-the-fly,” in which the network is only expanded
as needed.

To use BioNetGen rule-based modeling with Smoldyn, you need to write a rules file in the
BioNetGen language, called BNGL, and save it as a plain text file but with a .bngl suffix. Once
you have a rules file, you can either convert it to a reaction network yourself, using the BioNetGen
BNG2.pl program (a perl script), or you can tell Smoldyn to convert it to a reaction network, which
it does by calling the same BNG2.pl program. The former approach has the advantage of separating
the steps more cleanly, which might be easier for debugging, understanding the output, or setting
up multiple simulations more efficiently. The latter approach is a little more automated, which
might be better for making the code simpler for yourself or other users. Either way, BNG2.pl saves
the reaction network as a plain text file that has a .net suffix (which is fairly easy to understand).
Then, Smoldyn reads in this reaction network, adding the generated species and reactions to its
internal lists. During the process, Smoldyn also computes diffusion coefficients, default states,
display colors, display sizes, and molecule-surface interactions for the new species, as explained
below.

Note about errors: Sometimes Smoldyn can’t find files or can’t run BioNetGen. If so, then check
the following things. (1) It’s usually easiest if you navigate so that your current working directory
is the same location as both the Smoldyn and BioNetGen input files. (2) Check that your computer
has Perl installed by entering “perl -v”, which should just print out the version number. If you’re on
a Windows computer and you don’t have Perl, then I recommend installing Strawberry Perl, which
is free. (3) Check that your system has BNG2.pl installed and that Smoldyn knows where it is. For
Mac and Linux, its default location is /usr/local/bin/BioNetGen/BNG2.pl and for Windows its
default location is C:\Program Files\Smoldyn\BioNetGen\BNG.pl. If it’s there and Smoldyn isn’t
finding it (or if it’s somewhere else), tell Smoldyn where to find it with the BNG2 path statement,
remembering to give the complete path, including the BNG2.pl filename. (4) Even if Smoldyn finds
BNG2.pl, it may not be able to run it, which typically occurs if there are spaces in directory names,
including particularly the Windows “Program Files” directory name. The easiest solution to this,

83

12. Rule-based modeling with BioNetGen

at least for now, is to copy the BioNetGen code into the same directory as your simulation files.
For Windows this means entering xcopy "C:\Program Files\Smoldyn\BioNetGen" . /s . Then,
change the BNG2 path statement to be just “BNG2.pl”, meaning that it’s in the current directory.

12.2. Writing rules in BNGL

The BNGL language is relatively simple to use for most models. The language also has many
more sophisticated portions, for which interested readers should refer to the BioNetGen website
and publications by the BioNetGen team; the most relevant publication, which is included in the
documentation directory of the download package, is “Rule-Based Modeling of Biochemical Systems
with BioNetGen” by Faeder, Blinov, and Hlavacek, Methods in Molecular Biology, Systems Biology
500:113, 2009.

The following example file is called abba.bngl, named for the structure of the complete complex
(A-B-B-A).

BioNetGen file , run in Smoldyn with abbasim.txt

setOption("SpeciesLabel","HNauty")

begin model

begin parameters

Anumber 100

Bnumber 100

kab_on 200

kab_off 2

kbb_on 80

kbb_off 1

end parameters

begin seed species

A(a2b) Anumber

B(b2a ,b2b) Bnumber

end seed species

begin reaction rules

A bind to B

A(a2b) + B(b2a) <-> A(a2b!1).B(b2a!1) kab_on ,kab_off

B bind to B

B(b2b) + B(b2b) <-> B(b2b!1).B(b2b!1) kbb_on ,kbb_off

end reaction rules

end model

actions

generate_network ({ overwrite =>1})

The setOption statement tells BioNetGen how to do graph isomorphism checking. The HNauty
method, used here, is always a good approach. The model definition portion of the file, which is
essentially the entire file, starts with begin model and ends with end model statements. Within
this are three blocks: “parameters” in which you can define the values of variables, “seed species”
in which you define the monomers of the multimeric complexes and how many the simulation
should start with, and “reaction rules” in which you define the rules for the possible complexation
reactions, along with their reaction rates. Each block begins with a begin statement and ends with
an end statement.

The parameters block defines parameters and lists their values. In the seed species definitions,

84

12.3. Writing the Smoldyn file to read the rules or generated network

each line lists one subunit and all of its binding sites. Here, the A species has only one binding site,
called a2b and the B species has two binding sites, called b2a and b2b. These species are followed
by the number of molecules to include in the simulation (which will be randomly placed within the
simulation volume). Although not done here, it is typically easiest to set these molecule counts
to 0 and to then add monomers to the simulation with mol, surface mol, or compartment mol

statements in the Smoldyn input file. The reaction rules describe how things can bind together.
In the first rule, for example, A can bind to B using the a2b site on A molecules and the b2a site
on B molecules. The b2b site of B molecules does not affect this binding, so it is ignored in the
rule (alternatively, this rule could have specified that the b2b site must be bound, or unbound, for
this reaction to occur). On the right hand side of the rule, the period between the species indicates
a bond and the “!1” text labels the bond number; this latter notation is useful for distinguishing
bonds when there are multiple bonds in a single rule. Finally, the reaction rate is followed by
forward and reverse reaction rate constants. The last line of the file tells BioNetGen to generate
the network and to overwrite any previous output file. Note that BioNetGen can also do quite
a lot of other things in addition to simply generating the network, including running non-spatial
simulations; see the BioNetGen documentation for these.

12.3. Writing the Smoldyn file to read the rules or generated network

The following Smoldyn file reads and simulates the abba network.

Smoldyn configuration file to run abba.bngl BioNetGen network.

Graphical output

graphics opengl_good

System space and time definitions

dim 2

boundaries x 0 100 p

boundaries y 0 100 p

time_start 0

time_stop 1000

time_step 0.01

Molecular species and their properties

species A B

difc A 3

difc B 1

color A green

color B red

display_size all(all) 2

start_bng abba

multiply unimolecular_rate 1

multiply bimolecular_rate 1

#BNG2_path ../../../ source/BioNetGen/BNG2.pl

expand_rules abba.bngl

read_file abba.net

end_bng

text_display time A B A.1.B.1.0 B.2.0 A.1.B.2.0 A.2.B.2.0

end_file

This file declares the A and B species with a species statement and then gives their diffusion

85

12. Rule-based modeling with BioNetGen

coefficients and graphical display parameters. Later on, while parsing the BioNetGen output,
Smoldyn will assign these same values to the A and B monomers.

The BioNetGen portion of this file is in the “bng” block. It starts with the start bng statement
and the network name (you can also name the block using the name statement) and ends with
end bng. Within this block, Smoldyn recognizes some statements that are specific to Smoldyn,
as well as text from the BioNetGen .net file (i.e. you can just copy and paste the .net file into
here if you like). The multiply statements shown here enable you to enter factors with which
Smoldyn will multiply the unimolecular or bimolecular reaction rates. This is useful to make unit
conversions in case you used different units for reaction rates in the rules file and in the rest of the
Smoldyn configuration file. The BNG2 path statement, which is commented out here, specifies the
directory path to the BNG2.pl software. Ideally, the default path (set to /usr/local/bin for Macs
and Linux), will be correct and you won’t need to specify it here. However, if the default does not
work correctly, then you can give it here instead. The expand rules statement, with the filename
of the rules file, tells Smoldyn to call BNG2.pl, which will then expand the reaction network and
save the result as a .net file; Smoldyn does not parse the results at this point. Finally, read file

is a standard Smoldyn statement, which in this case reads in the .net file, adding the species and
reactions to the simulation in the process. The last line of this file tells Smoldyn to display the
species counts to the display.

When you run this configuration file in Smoldyn, you should, as always, look at Smoldyn’s
diagnostic text output. In this case, the BioNetGen portion of the output includes the following:

species allocated: 7, defined: 7

1 A (solution), count: 100, longname: A(a2b)

2 B (solution), count: 100, longname: B(b2a ,b2b)

3 A.1.B.1.0 (solution), count: 0, longname: A(a2b!1).B(b2a!1,b2b)

4 B.2.0 (solution), count: 0, longname: B(b2a ,b2b!1).B(b2a ,b2b!1)

5 A.1.B.2.0 (solution), count: 0, longname:

A(a2b!1).B(b2a!1,b2b!2).B(b2a ,b2b!2)

6 A.2.B.2.0 (solution), count: 0, longname:

A(a2b!1).A(a2b!2).B(b2a!2,b2b!3).B(b2a!1,b2b!3)

reactions allocated: 15, defined: 13

1 A + B -> A.1.B.1.0 rate: 200

2 B + B -> B.2.0 rate: 80

3 A + B.2.0 -> A.1.B.2.0 rate: 400

4 A.1.B.1.0 -> A + B rate: 2

5 B + A.1.B.1.0 -> A.1.B.2.0 rate: 80

6 A.1.B.1.0 + A.1.B.1.0 -> A.2.B.2.0 rate: 80

7 B.2.0 -> B + B rate: 1

8 A + A.1.B.2.0 -> A.2.B.2.0 rate: 200

9 A.1.B.2.0 -> A + B.2.0 rate: 2

10 A.2.B.2.0 -> A + A.1.B.2.0 rate: 4

11 A.1.B.2.0 -> B + A.1.B.1.0 rate: 1

12 A.2.B.2.0 -> A.1.B.1.0 + A.1.B.1.0 rate: 1

The species list shows that each species has both a short name and a long name. The long
names were generated by BioNetGen and give the full binding information. The short names were
shortened by Smoldyn for more convenient use. They list only the numbers of each monomer type
in a species, followed by an “isomer index” in case there are multiple complexes with the same
stoichiometry. The reaction list is shown using the short names. Note that the reaction rates
account correctly for the species’ binding sites; for example, reaction 3 has rate 400, rather than
the value of 200 that was given in the rules file for A-B binding, due to the fact that the A molecule
in this reaction can bind to either of two B monomers.

86

12.6. A ligand-receptor-messenger system in BioNetGen

12.4. Creating species groups in BioNetGen

It is often helpful to be able to output not just the number of a molecules of individual species, but
the number of molecules of all species that share some specific property. For example, one might
want the total number of molecules that include at least one AB group, independent of what else
is bound to them. To do so, you can define a species group using an “observables” section in the
BNGL file. These observables become species groups in the main Smoldyn program, as described
above the in the Molecules chapter. Each observable needs to have a name and then a species
pattern that tells which species are included. For example, adding these lines to the ABBA.bngl
file would create a species group called ABgroup:

begin observables

Species ABgroup A(a2b !1).B(b2a !1)

end observables

Species groups defined in this way can be used in most Smoldyn statements and commands.

12.5. Statements for rule-based modeling

The following list summarizes the statements for rule-based modeling.

Statement

start bng name
end bng

name name
multiply unimolecular rate value
multiply bimolecular rate value
monomer state monomer state
BNG2 path path
bng file filename

12.6. A ligand-receptor-messenger system in BioNetGen

The following BioNetGen and Smoldyn files represent a ligand-receptor-messenger signaling system.
In it, both an extracellular ligand and an intracellular messenger protein can bind to opposite sides
of a trans-membrane receptor. When a receptor binds both at once, it causes the messenger to
become phosphorylated, thus transmitting the ligand-binding event to an intracellular signal. The
messenger protein dephosphorylates spontaneously. This is substantially more complicated than the
above ABBA simulation because it uses monomer modification sites and surface-bound molecules.
The following sections discuss these files.

BNGL file , saved as lrm.bngl.

BioNetGen file , run in Smoldyn with surfacestatessim.txt

setOption("SpeciesLabel","HNauty")

begin model

begin parameters

krl_on 20

krl_off 0.01

87

12. Rule-based modeling with BioNetGen

krm_on 10

krm_off 0.02

k_phos 2

k_unphos 2

end parameters

begin molecule types

L(l2r)

R(r2l ,r2m)

M(m2r ,psite~u~p)

end molecule types

begin seed species

L(l2r) 0

R(r2l ,r2m) 0

M(m2r ,psite~u) 0

end seed species

begin reaction rules

L(l2r) + R(r2l) <-> L(l2r!1).R(r2l!1) krl_on ,krl_off

R(r2m) + M(m2r) <-> R(r2m!1).M(m2r!1) krm_on ,krm_off

R(r2l!+,r2m!1).M(m2r!1,psite~u) -> R(r2l!+,r2m!1).M(m2r!1,psite~p)

k_phos

M(psite~p) -> M(psite~u) k_unphos

end reaction rules

begin observables

Species Rbound R(r2l !+)

end observables

end model

actions

generate_network ({ overwrite =>1})

Following is another Smoldyn file, saved as lrmsim.txt:

#Smoldyn file , saved as lrmsim.txt

Smoldyn configuration file to run abba.bngl BioNetGen network.

Graphical output

graphics opengl_good

System space and time definitions

dim 2

boundaries x 0 100

boundaries y 0 100

time_start 0

time_stop 1000

time_step 0.05

Molecular species and their properties

species L R M.1.0 M.1.1

difc L 3

difc R(up) 0.2

difc M.1.0 2

difc M.1.1 1.5

color L(all) green

color R(all) blue

color M.1.0(all) orange

color M.1.1(all) red

88

12.7. Network expansion with monomer modifications

display_size all(all) 2

BioNetGen parameters

start_bng lrm

multiply unimolecular_rate 1

multiply bimolecular_rate 1

#BNG2_path ../../../ source/BioNetGen/BNG2.pl

monomer_state L fsoln

monomer_state R up

monomer_state M bsoln

expand_rules lrm.bngl

read_file lrm.net

end_bng

Surface parameters

start_surface membrane

action both all(all) reflect

panel rect +1 0 50 100

end_surface

start_surface outsides

action both all(all) reflect

panel rect +x 0 0 100

panel rect -x 100 0 100

panel rect +y 0 0 100

panel rect -y 0 100 100

end_surface

initial molecules

surface_mol 20 R(up) membrane all all

mol 20 L 50 80

mol 20 M.1.0 50 20

end_file

12.7. Network expansion with monomer modifications

Monomers can have modification sites, such as sites that can accept phosphate or methyl groups.
Using these modification sites can be preferable to treating them as complexation reactions with
phosphate or methyl molecules because doing so avoids needing to treat the additional molecules
explicitly.

Enter modification sites in the BNGL language by defining the monomers in a “molecule
types” block. This block is optional when not using modification sites. In this block, list the
different monomers, along with their binding sites. List modification sites similarly to binding
sites, but follow the site name with a sequence of tildes and the possible modifications. In the
lrm example, M(m2r,psite∼u∼p) declares the monomer M, which has a binding site called m2r
and a modification site called psite. This modification site can adopt either the “u” or the “p”
condition. In this case, the seed species block specifies that network expansion should start with
unphosphorylated M using M(m2r,psite∼u), but does not include phosphorylated M.

The molecule types and seed species blocks appear to be essentially the same, but aren’t actually.
The molecule types block is used to define each of the monomers, including all of their binding sites
and modification sites. The seed species block includes a list of species (which are typically, but not
necessarily monomeric). When expanding the reaction network, BioNetGen starts with each of these

89

12. Rule-based modeling with BioNetGen

seed species, finds their reactions and reaction products, then finds the reactions and products of the
newly generated species, and so on, eventually generating the entire reaction network. If a portion
of the network cannot be reached from the given list of seed species, then BioNetGen does not
generate it. Nevertheless, there is high overlap between the two blocks, which is why the molecule
types block is optional when there are no modification sites. Note the use of modification sites in the
reaction rules. Also, the third reaction rule has the reactant R(r2l!+,r2m!1).M(m2r!1,psite∼u).
The notation !+ indicates that the r2l site needs to be bound to something, but does not specify
the binding partner.

Smoldyn interprets modification sites as creating different isomers of a species. For this reason,
there is no species called just M in this simulation, because it would be unclear which modification
state that would represent. Instead, the two species are M.1.0 and M.1.1, where the former 1
denotes that there is 1 M monomer and the latter 0 or 1 denotes the isomer number (which, in
this case, corresponds to the “u” and the “p” condition, respectively). This Smoldyn file defines
the diffusion coefficient, color, and display size for both M isomers, which are then used in the
simulation. If the file did not define them, Smoldyn would have looked for these attributes for a
species named M or one called M.x.y, where x and y are any numbers, and used those instead.

12.8. Network expansion with surface-bound states

The lrm simulation also uses surface-bound states. These do not appear in the BioNetGen file
at all. Instead, they show up in the Smoldyn file in a couple of places. First, trivially, they
are used in the diffusion coefficient and graphical display statements, where they ensure that the
attributes get assigned to the correct states of the species. They also appear in the bng block, in
the monomer state statement. This specifies the state (solution, “bsoln,” or a surface-bound state)
in which each monomer is typically found. Smoldyn uses these to infer states for reaction products.

For example, this file says that ligands are in fsoln state, receptors in the up state, and messenger
proteins in the bsoln state. From these, Smoldyn assigns states to some of the reactions as:

L + R (up) -> L.1.R.1.0 (up)

L.1.R.1.0 (up) -> L + R (up)

R (up) + M.1.0 (bsoln) -> M.1.R.1.0 (up)

M.1.R.1.0 (up) -> R (up) + M.1.0 (bsoln)

Smoldyn uses the method that the state for a species is the highest precedence of the states for
the species’ subunits. In the first reaction, for example, the species L.1.R.1.0 has an L monomer
with state fsoln and an R monomer with state up, and the up state takes precedence, so the species
is assigned state up. The precedence order is: solution, “bsoln,” and then surface-bound states in
the order front, back, up, and down.

12.9. Short names, diffusion coefficients, and graphical parameters

Smoldyn assigns short names to each species that BioNetGen generates. As mentioned briefly
above, the format is that it lists each monomer and the number of copies of that monomer in the
species, and then an isomer number at the end, with the items separated by periods. Smoldyn gets
the monomer names from the species’ long names, which BioNetGen generates. The monomers
are listed in alphabetical order. If a species has only a single monomer in it and there are no
modification sites for this monomer, then Smoldyn abbreviates the short name to just the same
name as the monomer. Note that a monomer and a species that has just a single monomer can

90

12.10. Surface-molecule interactions

have the same names and are chemically identical, but are conceptually different in the software;
one is a monomer, which only exists in the context of parsing BioNetGen files, and the other is
a species, which is part of a Smoldyn simulation. Smoldyn assigns isomer numbers based on the
order in which it encounters the species in the BioNetGen output file. Thus, there is no a priori
way to know what the isomer number will be. The best approach is to figure out which is which
by reading the long name portion of the bng output.

For each monomer, Smoldyn looks for information with which it can assign diffusion coefficients
and graphical parameters. First, it sees whether the user assigned these using monomer difc,
monomer color, or monomer display size statements (very similar to the monomer state

statement). If not, Smoldyn sees whether the user created a species that has the same name
as the monomer, and then uses its attributes. If this fails, then Smoldyn sees whether there is a
species that has the monomer name followed by a .x.y suffix, where x and y are additional text,
and uses its attributes. If all of these fail, then Smoldyn simply assigns the monomer diffusion
coefficient to 0, the color to black, and the display size to 0.

For species, Smoldyn again starts by looking for definitions given in the input file. If none were
given, then it computes diffusion coefficients and graphics parameters based upon the values for
the monomers that compose the species. In doing so, it assumes that the mass of a species is the
sum of the monomer masses and also that both monomers and complexes of monomers are roughly
spherical and have similar densities. From these assumptions, the radius of a complex is the cube
root of the sum of the cubes of the monomer radii. Based on this, Smoldyn assigns a species display
size as

Sspecies =

(∑
i

S3
i

) 1
3

where Si is the display size of the i’th monomer. Smoldyn also assumes that the diffusion coefficient
scales as the inverse of the species radius, from the Stokes-Einstein equation. From this, it computes
the diffusion coefficient for a complex using

Dspecies =

(∑
i

D−3
i

)− 1
3

where Di is the diffusion coefficient of the i’th monomer. Smoldyn computes colors for species by
computing the arithmetic average of the red, green, and blue color values for each of the monomers.

12.10. Surface-molecule interactions

If your block of BioNetGen statements comes before your surface definitions in your Smoldyn input
file, then all of the species will have been generated before Smoldyn starts defining surfaces. In this
case, you can set surface actions or rates for the newly generated species yourself. In the surface
action or rate statements, you can list these species individually, all at once using the “all” option,
or selectively using species groups or wildcards.

The other option is to define surfaces before expanding the reaction network with BioNetGen. In
this case, Smoldyn infers the molecule-surface interactions for the newly generated species, much
as Smoldyn computes diffusion coefficients, colors, and display sizes for them. As for those other
species properties, Smoldyn considers the monomers that compose the new species and looks at
the molecule-surface interactions for those monomeric species. The surface action for a multimeric
complex is that of the component monomer that has the greatest action. In order of increasing

91

12. Rule-based modeling with BioNetGen

action, the possibilities are: transmit, multiple actions, reflect, jump, absorb, and port. Multiple
actions mean that there is some rate, such as for adsorption or desorption. If Smoldyn needs to
choose between two monomers with multiple actions, then Smoldyn chooses the one with the faster
rate constant. The polymer endsim.txt file illustrates this, although in a fairly minimal manner.

92

13. Filaments

Smoldyn has very minimal filament support at present. Filaments can be defined and some of them
can undergo Brownian motion, but these filaments can’t interact with molecules or surfaces yet.
See the examples in the S13 filaments directory.

13.1. Filament heirarchy

Filaments are structured in a three-tier hierarchy. At the top level, one defines one or more
filament types, where each type is represents a single kind of filament in a particular environment.
For example, actin filaments in the cytoplasm might be one type, and another is double-stranded
DNA in the nucleus. Within each type, every individual filament has the same dynamics method,
same dynamics parameters, and same graphical display. Also, if some type of filament has faces,
which are lengthwise elements along filaments, then each filament within a type has the same list
of faces.

The next level of the heirarchy are filaments, each of which is a sequential list of segments.
Each filament has its own set of locations and conformations. Filaments also have faces. In
addition, filaments can have “monomer codes”, which are characters that are equally spaced along
a filament’s length. These characters can represent DNA sequence, phosphorylation state, or some
other sequence. Filament energies can be computed from the conformation parameters. Filaments
can branch off of other filaments, and, obviously, can have filaments that branch off of themselves.

The bottom of the heirarchy are either segments or beads, depending on the type of dynamics
that are defined in the filament type, which are the components of filaments. In bead models,
the beads are at the filament vertices with straight lines between them. Beads are spherical. In
segment models, the segments are cylindrical edges that connect the vertices. Filament shapes
are straight lines either between the beads or along the segments, rather than being, for example,
Bézier curves that are defined by the vertices (called control points in that context). For now at
least, bead models do not contain relative rotation angle information, so are best for freely jointed
chains, whereas segment models do contain relative rotation angle information, so are necessary for
angle-biased chains or other more realistic models.

13.2. Defining filaments

Start by defining one or more filament types. Start this with the start filament type statement,
including the name of the filament type. Then, describe the filament type parameters, such as the
dynamics type (e.g. “alberts”, “nedelec”, “rigidbeads”, etc.), the dynamics parameters, and the
graphics instructions. Close this section with end filament type.

To create a filament, one approach is random filament, in which you give the filament a
name, a type, its length, and its starting location. Alternatively, a filament can be started with
start filament and ended with end filament, in between which are filament definitions, including
the type,

93

13. Filaments

The filament statement used to work as well, and several of the example files use it. However,
this statement doesn’t work at present.

94

14. Hybrid simulation

Most of the Smoldyn software is developed around the Smoluchowski level of detail. Here, each
individual molecule of interest in the simulation is represented as a small sphere that has a precisely
defined position in continuous space. This offers spatial accuracy down to nanometer size scales
for typical systems, which is more detailed than that offered by most other comparable simulation
software, but is necessary when studying biophysical processes that take place on these spatial
scales. The cost of this high level of detail is that simulations become computationally demanding,
both in terms of the number of processes that have to be run at each simulation time step and in
terms of the memory required to store all of the molecular information. Hybrid simulations can
offer solutions for simulating models with both high levels of detail and high speed, which they
accomplish by representing high levels of detail only as needed.

The hybrid methods that are particularly important here combine particle-based simulation
with lattice-based simulation. The particle-based simulation methods are Smoldyn’s standard
methods, which work at the Smoluchowski level of detail. The lattice-based methods represent
spatially compartmentalized versions of the chemical master equation, typically simulated using
one of the spatial Gillespie methods (partial differential equations or spatial Langevin methods are
also appropriate). Hybrid methods can use either overlapping space or adjacent space methods.
In the former case, the physical space represented by the lattice-based methods is the same as
that by the particle-based methods; molecules in one representation can interact with spatially
proximate molecules that are in the other representation. Smoldyn has been added to Virtual Cell
in this manner, where VCell provides the lattice representation and Smoldyn provides the particle
representation. Here, the lattice representation is best for abundant or rapidly diffusing species
where exact molecule positions don’t matter, and the particle representation for rare species where
the extra computational effort is necessary. In the latter case, the particle-based and lattice-based
methods represent adjacent regions of physical space. Molecules can diffuse back and forth between
the two regions, changing representations as they do so. This approach is best in cases where one
region of space needs to be simulated in detail, while surrounding regions can be simulated more
coarsely. The remainder of this section focuses on this latter adjacent space approach.

14.1. Hybrid simulation basics

The lattice module incorporated into Smoldyn is fairly simple. It represents lattices using an
axis-aligned rectangular array of subvolumes. It simulates chemical reactions using the next
subvolume (NSV) method, which treats molecules as discrete objects (i.e. not continuously variable
concentrations) and captures reaction stochasticity accurately. Whereas simulation time advances
with fixed length time steps in the particle-based methods, it advances with unequal steps, from
event to event, in the NSV method. The lattice region of space can be bounded by a few different
boundary types, but the lattice code does not currently address interactions between molecules and
any surfaces that are within the lattice region of space. The junction between the particle-based
region of space and the lattice region of space is created using a Smoldyn “port”, explained above.

95

14. Hybrid simulation

14.2. Defining lattices

To include a lattice in a model, you need to add a lattice, obviously. This is entered using a block
of statements that starts with start lattice and ends with end lattice, much like similar blocks
for surfaces, compartments, and other things. The definitions that can be entered within this block
are discussed below. In addition to adding a lattice, you also need to define a port, which will
form the junction between the particle space and the lattice space. And to create a port, you will
need to define at least one surface. The examples/S14 lattices/diffusion.txt file shows a very simple
example of model that uses a lattice.

First, it’s a good idea to define the lattice type using the type statement. In principle, this will
enable you to choose whether the lattice region is simulated with discrete numbers of molecules using
NSV algorithm, with continuous concentrations using PDE algorithms, or with other methods. In
practice though, only NSV is currently implemented, and NSV is the default, so you don’t actually
need to define the type. On the other hand, you do need to define the port that separates particle
space from lattice space, using the port statement. Define the boundaries of the lattice space
using the boundaries statement. It is essentially identical to the boundaries statement for the main
portion of the configuration file, but that one only applies to the particle region of space and this
one only applies to the lattice region of space. The two sets of boundaries are typically strictly
adjacent to each other, with no gap and no overlap, but it is also just fine if they overlap. The
port should obviously be at the intersection of the two sets of boundaries, or somewhere within
the overlap region. By default, the lattice boundaries are reflective, but they can also be periodic.
These are entered with optional characters after the rest of the statement, exactly as for the particle
side boundaries statement.

Lattice partitioning is defined using the lengthscale statement. The values entered here should
be even divisors of the boundaries dimensions. Also, make sure that the port is at a partition
boundary and make sure that there is at least one partition on either side of the port. Note that
misalignments can arise from round-off errors. To avoid this, use boundaries, port positions, and
lattice compartment sizes that are integers, or that use an integer power of two decimal (e.g. 0.5,
0.25, 0.375, etc., but not 0.1, 0.2, 0.3, etc.).

Use the species and reactions statements to tell a lattice which species and reactions it should
work with. Often, “all” is used, meaning that the lattice should know about all of the same species
and/or reactions as the particle side of the simulation uses. However, it’s also possible to specify
a subset of the total species and reactions lists. This is useful because the lattice code runtime
increases with more species and with more reactions, unlike the particle side, which increases with
numbers of individual molecules. Lattices cannot work with any species or reactions that are not
also defined in the particle side. However, it is possible to have a reaction only perform on the
lattice side. In this case, define the reaction on the particle side, with a rate constant as usual.
Then, when listing the reactions that the lattice side should work with, use the keyword “move” to
indicate that all subsequent reactions in the list should be “moved” to the lattice side and disabled
on the particle side.

Finally, use the mol statement to add molecules to the lattice side. This is essentially identical
to the statement of the same name in the main portion of the configuration file, but only applies
to the lattice side of space.

96

14.4. Statements about lattices

14.3. Lattice output

Several commands output information from lattices. printLattice outputs some basic information
about the lattice, including the low and high corners of the lattice space, the subvolume partition
spacing, and the total number of each species in the lattice. This is the same output that is
displayed with the simulation diagnostics.
molcount and molcountspace are functions that are often used with non-lattice simulations. In

addition to counting molecules in the particle region of space, they also count molecules in the
lattice region; there is no way to select just particle region or just lattice region. molcountspace

does not count molecules that are in transit between representations (if you select a single species
and state; it does if you select all species and/or all states), so it will miss a few molecules. savesim
saves the full simulation state; it saves the lattice state as well as the rest. Other molecule counting
commands do not include lattice molecules.

Finally, writeVTK produces VTK output for both the particle and lattice regions of space. It
does not include surface information. The output is saved as a stack of files that have names that
follow the format filenameLattice00 00001.vtu and filenameMolecules00001.vtu, and that have
incremented numbers for subsequent snapshots. This output can be viewed using Paraview, Visit,
or other VTK viewers. It doesn’t appear that any of them are trivial to use.

14.4. Statements about lattices

The following table summarizes the statements about lattices.

Statement Description
start lattice name start defining a lattice
type type type of the lattice (“nsv”)
port port port for exchanging molecules
boundaries dim pos1 pos2 type boundaries of the lattice region of space
lengthscale x1 x2 x3 partition spacing for lattice subvolumes
species species1 species2 ... species that the lattice should recognize
reaction [move] reaction1 reaction2 ... reactions that the lattice should recognize
mol nmol name pos0 pos1 ... posdim−1 starting molecules in the lattice space
end lattice end the lattice block

97

15. Python and C/C++ interfaces

Libsmoldyn is a C, C++, and Python interface to the Smoldyn simulator. It complements the
stand-alone Smoldyn program in that it is a little more difficult to use, but it provides much more
flexibility. Libsmoldyn provides: (1) an application programming interface (API) that will be
relatively stable, even as Smoldyn is updated and improved, (2) function names that are relatively
sensible and that shouldn’t collide with other function names in other software, and (3) reasonably
thorough error checking in every function which helps ensure that the user is using the function in
a sensible way and in a way that won’t crash Smoldyn. Libsmoldyn was originally written as a C
API, but should work with C++ as well. It also offers Python bindings, which are still quite new
but generally work well and are more convenient for most applications.

The remainder of this chapter describes some aspects of these interfaces in detail, but doesn’t give
a comprehensive list of the functionality. For that, refer to Chapter 20, in the Reference section.

15.1. Installing

The best method is to download the latest package from http://www.smoldyn.org and run the
install script. This will install the stand-alone program, the C/C++ libraries, and the BioNetGen
code, and will also give you the documentation and example files. If you have pip installed, then it
will also install the Python bindings.

Another option is to install the Python components from PyPI with:

pip install smoldyn

If this doesn’t work, then a different possibility is:

python3 -m pip install smoldyn --user --pre

Either of these should install the smoldyn nightly package, from: https://pypi.org/project/

smoldyn/. For Windows, Python is often called “py”, so try this if the above doesn’t work (or your
computer asks you to download Python from the Windows store, which probably isn’t necessary).
For those who are curious, the “-m” option means to run pip as a python module, the “–user”
option means to install to the user directory, and the “–pre” option means to include pre-release
versions. Feel free to try more or fewer options, of course. Also, some other useful pip options
are: “pip uninstall smoldyn”, “pip cache purge” (pip installs from its cached version if it already
has one, so this is useful if you want to force it to download the online version), and “pip search
smoldyn”.

After installing, it might just run. If not, then the next challenge is to get your system to know
that it’s allowed to run the files. There are a few ways to do this. (1) You can navigate to one
directory above where the “ init .py” file gets stored and work from there. To try this out, go
there and start Python; then try import smoldyn and see if it works. (2) You can set PYTHONPATH
environment variable to the install location. However, this only works for the current command-line
session and needs to be reset for the next one. To see its current value, for Mac or Linux, enter echo
$PYTHONPATH. (3) You can modify your sys.path variable to include a path to the install location,
which then lasts for new command-line sessions as well. To see its current value, start Python and
enter: import sys; print(sys.path).

99

http://www.smoldyn.org
https://pypi.org/project/smoldyn/
https://pypi.org/project/smoldyn/

15. Python and C/C++ interfaces

15.2. Current limitations

The Python interface has a few limitations that users should be aware of. We are working on fixing
them.

• Rule-based modeling. Rule-based modeling support, including both BioNetGen and Smoldyn
wildcards, has not been added to Libsmoldyn yet, including its Python API.

• Python quits after simulation if graphics are used. A benefit of running Smoldyn through
the Python interface is that the simulation and data analysis code can be included in the
same Python file. Unfortunately, the OpenGL glut library that Smoldyn uses to display its
graphical output does not return control to Smoldyn after the user quits the graphics but
returns to the operating system, making it impossible to continue with further Python code.
The only good solution for now is to display graphics while developing a simulation, and then
re-run simulations with graphics turned off when collecting quantitative data. Note that the
random number seed can be set to the same value in each case so that the simulation will be
exactly the same.

• TIFF output doesn’t work on some computers. For some reason, Smoldyn cannot output
TIFF files when run through the Python interface, at least on some computers. The Smoldyn
code itself runs just fine, but it calls the TIFFOpen function in the libtiff library, which
somehow refuses to open a new TIFF file. Alternative options for exporting graphics are: (1)
rewrite the model without the Python interface, (2) save the current model and state using
the savesim command, and then run that using the stand-alone Smoldyn software (i.e. the
Smoldyn application, without the Python interface), (3) pause the simulation and capture the
graphics using a screen grab, (4) use the VTK graphical output option. Yet another option
is to convince a Smoldyn developer to add png export support for Smoldyn, such as with the
“Tiny PNG Output” project, which looks fairly easy but hasn’t been done yet.

15.3. Python API example

The following example, template.py, is from the “examples” directory in the Smoldyn download.
It simulates a Michaelis-Menten reaction in which substrates and products diffuse freely within a
circular membrane (it’s simulated in two dimensions, for simplicity) and enzymes are bound to the
membrane.

1 """ Template for writing Smoldyn model in Python

2

3 Use standard docstring to list basic file information here , including your

4 name , the development date , what this file does , the model name if you want

5 one , units used , the file version , distribution terms , etc.

6

7 Enzymatic reactions on a surface , by Steve Andrews , October 2009. Modified by

8 Dilawar Singh , 2020. Model is public domain. Units are microns and seconds.

9 It was published in Andrews (2012) Methods for Molecular Biology , 804:519.

10 It executes a Michaelis -Menten reaction within and on a 2D circle.

11 """

12

13 __author__ = "Dilawar Singh"

14 __email__ = "dilawars@ncbs.res.in"

15

16 import smoldyn

100

15.3. Python API example

17

18 # Model parameters

19 K_FWD = 0.001 # substrate -enzyme association reaction rate

20 K_BACK = 1 # complex dissociation reaction rate

21 K_PROD = 1 # complex reaction rate to product

22

23 # Simulation starts with declaring a Simulation object with the system

boundaries.

24 s = smoldyn.Simulation(low=[-1, -1], high=[1, 1])

25

26 # Molecular species and their properties

27 # Species: S=substrate , E=enzyme , ES=complex , P=product

28 # Type ‘help(smoldyn.Species)‘ in Python console to see all parameters.

29 S = s.addSpecies("S", difc=3, color=dict(all="green"), display_size=dict(all

=0.02))

30 E = s.addSpecies("E", color=dict(all="darkred"), display_size=dict(all =0.03))

31 P = s.addSpecies("P", difc=3, color=dict(all="darkblue"), display_size=dict(

all =0.02))

32 ES = s.addSpecies("ES", color=dict(all="orange"), display_size=dict(all =0.03))

33

34 # Surfaces in and their properties. Each surface requires at least one panel.

35 # Add action to ‘both ‘ faces for surface. You can also use ‘front ‘ or ‘back ‘

36 # as well. Here , ‘all ‘ molecules reflect at both surface faces.

37 sph1 = smoldyn.Sphere(center =(0, 0), radius=1, slices =50)

38 membrane = s.addSurface("membrane", panels =[sph1])

39 membrane.setAction(’both’, [S, E, P, ES], "reflect")

40 membrane.setStyle(’both’, color="black", thickness =1)

41

42 # Define a compartment , which is region inside the ’membrane ’ surface.

43 inside = s.addCompartment(name="inside", surface=membrane , point =[0, 0])

44

45 # Chemical reactions. Here , E + S <-> ES -> P

46 r1 = s.addBidirectionalReaction("r1", subs =[(E,"front"), (S,"bsoln")],

47 prds =[(ES,"front")], kf=K_FWD , kb=K_BACK)

48 r1.reverse.productPlacement("pgemmax", 0.2)

49

50 r2 = s.addReaction("r2", subs =[(ES, "front")], prds =[(E, "front"),

51 (P, "bsoln")], rate=K_PROD)

52

53 # Place molecules for initial condition

54 inside.addMolecules(S, 500)

55 membrane.addMolecules ((E, "front"), 100)

56

57 # Output and other run -time commands

58 s.setOutputFile(’templateout.txt’, True)

59 s.addCommand(cmd="molcountheader templateout.txt", cmd_type="B")

60 s.addCommand(cmd="molcount templateout.txt", cmd_type="N", step =10)

61

62 s.setGraphics(

63 "opengl_good", bg_color="white", frame_thickness =1,

64 text_display =["time", S, (E, "front"), (ES, "front"), P])

65 s = s.run(stop=10, dt =0.01)

1-11. The file starts with a docstring, which is a useful way to provide information about the
model, authors, etc. Smoldyn does not handle units at all, so it’s the user’s responsibility to
make sure that all units are consistent with each other. The best approach is simply to make
sure that all lengths use the same units, such as nanometers or microns, and all times use

101

15. Python and C/C++ interfaces

the same units, such as milliseconds. This also applies to derived units, such as volumes and
rate constants.

13-14. Entering the author and email address with double underscores follows good Python
form.

16. Import the Smoldyn Python API with “import smoldyn”. If you want the low-level
Python API, then import it with “import smoldyn. smoldyn”.

18-21. This file defines some variables, which are just regular variables and not part of
Smoldyn at all. The file uses upper case variable names to stay consistent with the stand-
alone Smoldyn example file with the same name, but this isn’t really the best convention in
Python.

23-24. All models start by creating a Simulation object, which includes the boundaries of
the system space. The dimensionality of the space, whether 1D, 2D, or 3D, is inferred from
the number of boundary coordinates given. Smoldyn actually tracks molecules outside of this
volume, too, but it runs most efficiently if most of the action in the simulation occurs within
the system volume. It’s possible to create multiple simulation objects if you want.

26-32. Add species to a simulation with “sim.addSpecies”. Each species is required to have a
name. The diffusion coefficient, given with “difc”, defaults to a value of 0, such as for the “E”
species. The color, which is only used for graphical output, can often be given with a simple
assignment, such as “color=’green”’. However, that’s not used here because these molecules
can have multiple states, including in solution or bound to the surface. Instead, the colors are
specified here with “dict()” functions, showing that these colors apply to all of the molecule
states. Similarly, the “display size” argument is only used for graphical output, and is given
with “dict()” functions here because of the multiple states.

34-40. This model includes surface, called “membrane”. This surface is composed of one
circular panel, which is called a sphere here because Smoldyn names its panels based on
analogous 3D shapes. The panel is created first by defining its center and radius. The “slices”
parameter refers to how many sides should be drawn on the circle for graphical output, since
Smoldyn doesn’t actually draw perfect circles. Internally, a circle or sphere is defined using
the mathematical definition of a circle or sphere, so it doesn’t have flat sides. Each surface
has a front and back face; for a spherical panel, as used here, the front face is the outside
by default. After defining the panel, the code defines a surface and the panel is added to it.
Then, the surface actions are defined, meaning what happens to molecules that diffuse into
it. In this case, for both the front and back faces of the surface, any molecule of the given
list of species (which happens to be all of them) is reflected back toward where it came from.
Finally, the surface drawing style is defined, here showing that both the front and back faces
should be black and have a thickness of 1 pixel.

42-43. Compartments are regions of space that are bounded by surfaces, in this case
“membrane”. Also, they have “interior-defining points”, which define which side of the surface
represents the inside of the compartment.

45-51. Chemical reactions have names, substrates, products, and rate constants. Here, each
of the substrates and products are listed with both species and states, although states are
assumed to be solution if not given. Because the front face of a spherical panel is the outside,
the fact that the substrates enter from the back side of the surface is specified by specifying

102

15.4. User and low-level Python APIs

that they have “bsoln” states, meaning in solution on the back side. The products are similar.
For reversible reactions, there is always some probability that the two product molecules of
one of the reaction directions will diffuse back together and bind back together again, which
is called a geminate recombination. It’s not essential, but it’s good practice to tell Smoldyn
how likely this recombination should be. Here, it’s set to a maximum probability of 0.2, which
generally works well.

53-55. Add molecules to the simulation with the “addMolecules” function, where its used
here both for adding molecules into the compartment and onto the surface.

57-60. Run-time commands are used for manipulating or observing the simulated system as
it runs, effectively acting as the experimenter. In this case, an output file is declared, called
“templateout.txt”. Then, right before the simulation runs, given by command type ‘B’, the
command called “molcountheader” is run with parameter “templateout.txt”, which is the file
name that it should write to. This prints out a header for the molcount command, which is
just a list of species names. The other command is type ‘N’, which means that it runs every n
time steps, which is this case is every 10 steps. It is the “molcount” command with parameter
“templateout.txt”, which prints out the number of each molecule type to the same file.

62-64. Smoldyn run-time graphics show the simulation as it runs, always using the OpenGL
library. Here, the “opengl good” method is used, which produces nice output but without
any lighting effects. The background color is white and the frame thickness is 1. Also, this
statement says to show text on the graphics window listing the time and numbers of the
different molecule types.

65. Finally, the simulation is run, here for 10 time units in steps of 0.01 time units.

15.4. User and low-level Python APIs

Smoldyn’s Python API is divided into two portions. The user API, imported with import smoldyn,
is what most people will use most of the time and is the one that’s demonstrated above in the
example simulation. The low-level API, imported with import smoldyn. smoldyn, is more of a
wrapper for the C API, with less Pythonic syntax and user friendliness.

15.5. Creating new simulations

Create a new simulation from scratch by defining the system boundaries with smoldyn.Simulation,
or load a simulation from a file with smoldyn.Simulation.fromFile, as shown below. Each of
these options returns a Simulation object.

>>> import smoldyn

>>> import smoldyn._smoldyn as S

>>> s1 = smoldyn.Simulation ([0, 0], [10, 10])

>>> s1

<smoldyn.smoldyn.Simulation object at 0x10b5b0950 >

>>> import os

>>> mindir = os.getcwd () + "/Min1.txt"

>>> s2 = smoldyn.Simulation.fromFile(mindir , "")

<smoldyn.smoldyn.Simulation object at 0x1010019a0 >

103

15. Python and C/C++ interfaces

The fromFile option uses the absolute path of the file, which isn’t always necessary, but is advised
because the Smoldyn loading functions change the working directory, making it unreliable. You can
also supposedly get the directory for a specific file, here called Min1.txt, with import pathlib;

pathlib.Path("Min1.txt").resolve(), but I’ve found that this can return an incorrect path.
As an aside, the Python Simulation object is not the same as the C/C++ simulation pointer.

The latter can be accessed with s1.simptr.

15.6. Callback functions

The Python API offers a callback function that enables Smoldyn setup functions to be called
repeatedly and automatically during a simulation. For example, this could be used to tell the
simulation about external environmental parameters that change over the course of a simulation.

For example, suppose we have the following function, “computeVm”, which generates a noisy
value using the current time, “t”, and a list of arguments, “args”. Also, we have a molecular species,
“ca”. The output of the “computeVm” function can be connected to the “ca.difc” parameter, which
is called every 10th step in this case.

def computeVm(t, args):

x, y = args

return math.sin(t) + x * y + random.random ()

...

import smoldyn

sim = smoldyn.simulation(low=[0, 0], high =[10, 10])

ca = sim.addSpecies(’ca’, difc=1, color=’blue’, display_size =1)

...

sim.connect(func = computeVm , target = ’ca.difc’, step=10, args =[1 ,2.1])

Both the source and target in the connect function must be global variables. Also, there are
limits on the types of values that the source function is allowed to return. Single numeric values
work well, and lists do not work; I don’t know about other possibilities. If you want to transfer other
things, such as lists, a good approach is to use a global variable for it, in which the source function
writes to this global variable and then that global variable is read by the target function (which
needs to be your own Python code, as demonstrated below in the example of connect accepting a
target function).

Information can also be transmitted between Smoldyn and your Python code using text files. For
example, you can use the output commands to save data to a file, and then use your connect source
function to read these data and then do something based on what it sees. In this case, beware that
Smoldyn changes the working directory. So, it’s a good idea to get the current working directory
with the Python function os.getcwd() before Smoldyn is called, and then include this in your file
path.

In the example below, a global variable is made before it is used in connect because otherwise
there would be a runtime error.

import smoldyn

import random

a = None

def new_dif(t, args):

global a

x, y = args

print(a.difc)

return t + random.random ()

104

15.7. Use with C/C++

def test_connect ():

global a

sim = smoldyn.Simulation(low=(0, 0), high =(10, 10))

a = sim.addSpecies(’a’, color=’red’, difc =1)

sim.connect(func = new_dif , target = ’a.difc’, step=10, args=[0, 1])

sim.run(100, 1)

print(’All done’)

test_connect ()

The following example shows that connect can accept a target function.

def new_dif(t, args):

global a, avals

x, y = args

note that b.difc is not still updated.

avals.append ((t, a.difc["soln"]))

return x * math.sin(t) + y

def update_difc(val):

global a

a.difc = val

def test_connect ():

global a, avals

sim = smoldyn.Simulation(low=(0, 0), high =(10, 10))

a = sim.addSpecies(’a’, color=’black’, difc =0.1)

sim.connect(new_dif , update_difc , step=10, args=[1, 1])

sim.run (100 ,1)

for a, b in zip(avals [1:], expected_a [1:]):

print(a, b)

assert math.isclose(a[1], b[1], rel_tol =1e-6, abs_tol =1e-6), (a[1], b[1])

test_connect ()

Additional examples of “connect” are included in S15 python/change env.py, which simulates a
pre-synaptic bouton with n synaptic vesicles. These vesicles fuse with the bottom of the bouton
(red surface). Upon fusion, one vesicle releases 1000 neurotransmitters which decay with time-
constant τ . The rate of release is controlled by a function that is set by “connect”. The function
generates a spike 0 or 1; if the value is 1, the rate is set to 1000, else it is 0.

15.7. Use with C/C++

Compiling

Header files

To enable a C or C++ program to call Libsmoldyn, it has to include the Libsmoldyn header file.
Libsmoldyn comes with one header file, libsmoldyn.h, which has function declarations for all of the
Libsmoldyn functions. For most Libsmoldyn applications, this is the only header file that you will
need to include. For Mac and Linux, it is typically installed to /usr/local/include. This is one of
the standard system paths, so include it with

#include <libsmoldyn.h>

105

15. Python and C/C++ interfaces

If the libsmoldyn.h header file is in some other directory or if your system isn’t seeing its path as
a system path, then include the file using double quotes rather than angle brackets and/or include
more information about the path. For example, #include ”/user/local/include/libsmoldyn.h”.

Libsmoldyn.h calls a second header file, smoldyn.h, which is also typically installed to
/usr/local/include/. If you plan to access the Smoldyn data structure directly, then you will
also need to include it with #include <smoldyn.h>. In general, it is safe to read from this data
structure but it can be dangerous to write to it unless you really know what you are doing. Also,
working with this data structure directly bypasses one of the benefits of using Libsmoldyn, which is
that the interface should be relatively immune to future Smoldyn developments, because different
aspects of the internal data structure get changed once in a while.

The smoldyn.h header calls yet another header file, smoldynconfigure.h, which is also installed by
default in /usr/local/include/. That file is automatically generated by the build system. It describes
what Smoldyn components are included in the build, what system the build was compiled for, etc.
This might be helpful to include for some applications.

Compiling example

In the examples/S97 libsmoldyn/testcode/ directory, you’ll find the testcode.c program. To
compile this source code to object code, enter:

gcc −Wall −O0 −g −c testcode.c

The compile flags -O0 -g aren’t necessary but can be useful for debugging purposes. If compiling
doesn’t work at this stage, it’s probably because you’re missing the header files. Make sure that
you have libsmoldyn.h, smoldyn.h, and smoldyn config.h in the /usr/local/include directory.

Linking

Linking the different object files together to create an executable that actually runs is often one of
the greatest frustrations of using software libraries. It should be easy but usually isn’t.

The Libsmoldyn library can be linked statically, meaning that the Libsmoldyn code will be copied
into the final result, or it can be linked dynamically, so that the final result will simply reference
the Libsmoldyn code that is stored separately. Dynamic linking is somewhat more elegant in that
it doesn’t create unnecessary copies of the compiled code. It can also be easier. On the other hand,
it’s less convenient if you plan to distribute your software, because then you need to make sure that
you distribute the Libsmoldyn header file and library code along with your own software. Also,
I can only get the gdb debugger to help find errors within Libsmoldyn if the library is statically
linked.

The Libsmoldyn static library is called libsmoldyn static.a and the Libsmoldyn dynamic library
is called libsmoldyn shared.so (on Linux; the .so suffix is replaced by .dylib on a Mac and by .dll
on Windows). By default, these libraries are installed to /usr/local/lib/.

Linking examples

Following are several example for static and dynamic linking. They are shown for C; if you use
C++, then link with g++ instead of gcc. The linking options for Smoldyn compiled with OpenGL
are shown for Macintosh; these lines are simpler for other systems.

I have had a hard time getting static linking working on a Mac, although apparently it works
fine on Ubuntu. The problem is that it doesn’t find the standard C++ library. The solution is

106

15.7. Use with C/C++

to build the Smoldyn library without NSV, so that the standard C++ library isn’t needed. I also
commented out a few “throw” statements from smolsim.c and libsmoldyn.c for this purpose.

Static link, no OpenGL:

gcc testcode.o /usr/local/lib/libsmoldyn_static.a -o testcode

Static link, with OpenGL:

gcc testcode.o /usr/local/lib/libsmoldyn_static.a -I/System/Library/Frameworks/

OpenGL.framework/Headers -I/System/Library/Frameworks/GLUT.framework/Headers -

framework GLUT -framework OpenGL -framework Cocoa -L/System/Library/Frameworks/

OpenGL.framework/Libraries -o testcode -ltiff}

Dynamic link, no OpenGL:

gcc testcode.o -o testcode -lsmoldyn_shared

Dynamic link, with OpenGL:

gcc test1.o -L/usr/local/lib -I/System/Library/Frameworks/OpenGL.framework/Headers

-I/System/Library/Frameworks/GLUT.framework/Headers -framework GLUT -framework

OpenGL -framework Cocoa -L/System/Library/Frameworks/OpenGL.framework/

Libraries -o test1 -lsmoldyn_shared -ltiff

If you’re having problems with linking, note that you can enter nm --demangle

libsmoldyn static.a to get a complete list of functions in this library.

Memory management

None of the Libsmoldyn functions allocate memory, except within the simulation data structure.
This means, for example, that all functions that return strings do not allocate these strings
themselves, but instead write the string text to memory that the library user allocated and gave
to the function. That memory clearly needs to be freed, by the library user, when it is done being
used. When the simulation is complete, the simulation data structure should be freed, which will
automatically free all substructures in the process.

Nearly all strings are fixed at STRCHAR characters, where this constant is defined in string2.h to
256 characters.

Error trapping

Every function in Libsmoldyn checks that its input values are acceptable and also that no errors
arise in the function execution. These errors are returned to the host library in a number of ways.
Most Libsmoldyn functions (e.g. smolRunSim) return any error codes directly, which makes it easy
to see if an error arose. However, a few functions (e.g. smolNewSim) return other types of values
and so return some other indication of success or failure (e.g. NULL). In addition, some functions
can raise warnings, which indicate that behavior is unusual but not incorrect.

For all of these errors and warnings, get the details of the problem using the function
smolGetError, which will return the error code, the name of the function where the error arose,
and a descriptive error string. This will also clear the error, if desired. If errors are not cleared,
they are left until they are overwritten by subsequent errors. Warnings are also left until they are
cleared or overwritten.

When writing code that calls Libsmoldyn, it can be helpful to put Libsmoldyn into its debugging
mode using the smolSetDebugMode function. Doing this causes any errors that arise to be displayed
to stderr.

The possible error codes are declared in libsmoldyn.h with:

107

15. Python and C/C++ interfaces

enum ErrorCode {ECok=0, ECnotify=-1, ECwarning=-2, ECnonexist=-3, ECall=-4,

ECmissing=-5, ECbounds=-6, ECsyntax=-7, ECerror=-8, ECmemory=-9, ECbug=-10,

ECsame =-11}

Their interpretations are:

value code interpretation

0 ECok no error
-1 ECnotify message about correct behavior
-2 ECwarning unusual but not incorrect behavior
-3 ECnonexist a function input specifies an item that doesn’t exist
-4 ECsame error code should be unchanged from a prior code
-5 ECall an argument of “all” was found and may not be permitted
-6 ECmissing a necessary function input parameter is missing
-7 ECbounds a function input parameter is out of bounds
-8 ECsyntax function inputs don’t make syntactical sense
-9 ECerror unspecified error condition
-10 ECmemory Smoldyn was unable to allocate the necessary memory
-11 ECbug error arose which should not have been possible

Error checking internal to libsmoldyn.c

This section describes how to write Libsmoldyn functions using error checking. While it is an
essential part of all Libsmoldyn functions, these details are not important for most Libsmoldyn
users.

1. The first line of every Libsmoldyn function should be const char

*funcname="function name";. This name will be returned with any error message to tell
the user where the error arose.

2. Within the function, check for warnings or errors with either the LCHECK or LCHECKNT

macros. In both cases, the macro format is LCHECK(condition, funcname, error code,
"message");. The macros check that the test condition is true, and calls either smolSetError
or smolSetErrorNT to deal with it if not. The message should be a descriptive message that
is under 256 characters in length. Use the regular version (not the “no throw” or “NT”)
version for errors that arise within the function, and the “NT” version for errors that arise is
subroutines of the function, so that only a single error message is displayed to the output.

3. Most functions return an “enum ErrorCode”. If this is the case for your function, and your
function might return a notification and/or a warning, then end the main body of the function
with return libwarncode;. If it cannot return a notification or a warning, then end it with
return ECok;. Finally, if it does not return an “enum ErrorCode”, then it needs to return
some other error condition that will tell the user to check for errors using smolGetError.

4. After the main body of the function, add a goto target called failure:.

5. Assuming the function returns an “enum ErrorCode”, end the function with return

liberrorcode;.

The smolSetTimeStep function provides an excellent and simple example of how Libsmoldyn
functions typically address errors. It is:

108

15.7. Use with C/C++

enum ErrorCode smolSetTimeStep(simptr sim , double timestep) {

const char *funcname="smolSetTimeStep";

LCHECK(sim , funcname , ECmissing , "missing sim");

LCHECK(timestep >0, funcname , ECbounds , "timestep is not > 0");

simsettime(sim , timestep , 3);

return ECok;

failure:

return liberrorcode; }

The smolGet...Index functions are worth a comment. Each of these functions returns the index
of an item, such as a species or a surface, based on the name of the item. If the name is not found or
other errors arise, then these functions return the error code, cast as an integer. Also, if the name
is “all”, then these functions return the error code ECall and set the error string “species cannot
be ‘all’”, or equivalent. A typical use of these functions is seen in smolSetSpeciesMobility, which
includes the following code:

i=smolGetSpeciesIndex(sim , species);

if(i==(int)ECall) smolClearError ();

else LCHECK(i>0, funcname , ECsame , NULL);

In this particular case, this function permits an input of “all”, so it clears errors that arise from
this return value, and leaves i as a negative value for later use.

109

Part III.

Reference

111

16. Math operations and functions

Mathematics operations, listed in order of precedence

Operator Meaning

Functions see list below
(), [], {} parentheses, brackets, and braces (e.g. x ∗ [y + z])
ˆ powers (e.g. xy)
* / % multiplication, division, modulo (e.g. x/y)
+ - addition, subtraction (e.g. x+ y)

Functions of one variable

cos(x) acos(x) cosh(x)
sin(x) asin(x) sinh(x)
tan(x) atan(x) tanh(x)
exp(x) log(x) log10(x)
sqrt(x) fabs(x)
floor(x) ceil(x)

Functions of two variables

atan2(x, y)
pow(x, y)
rand(x, y)

113

17. Quick function guide

The following table lists all of the Smoldyn statements on the left and their corresponding
Libsmoldyn functions on the right. Statements preceded by asterisks need to be either entered
in statement blocks or preceded by the statement’s context (e.g. with surface name). Where
correspondence does not apply, the table lists “N/A”. The Libsmoldyn functions are available
either through the C/C++ API or through the low-level Python API, with essentially identical
input styles.

Statement Function

About the input

N/A
/* ... */ N/A
read file LoadSimFromFile

ReadConfigString

end file N/A
quit at end
define N/A
define global N/A
undefine N/A
ifdefine N/A
ifundefine N/A
else N/A
endif N/A
display define N/A
variable N/A
N/A SetError

N/A GetError

N/A ClearError

N/A SetDebugMode

N/A ErrorCodeToString

Space and time

dim NewSim

boundaries NewSim

SetBoundaryType

low wall NewSim

SetBoundaryType

high wall NewSim

SetBoundaryType

time start SetSimTimes

SetTimeStart

time stop SetSimTimes

SetTimeStop

115

17. Quick function guide

time step SetSimTimes

SetTimeStep

time now SetTimeNow

Molecules

species AddSpecies

species group
N/A GetSpeciesIndex

N/A GetSpeciesName

difc SetSpeciesMobility

difc rule
difm SetSpeciesMobility

difm rule
drift SetSpeciesMobility

drift rule
surface drift
surface drift rule
mol AddSolutionMolecules

surface mol AddSurfaceMolecules

surface.addMolecules
compartment mol AddCompartmentMolecules

compartment.addMolecules
molecule lists AddMolList

mol list AddSpecies

SetMolList

mol list rule
N/A GetMolListIndex

N/A GetMolListName

max mol SetMaxMolecules

N/A GetMoleculeCount

Graphics

graphics SetGraphicsParams

graphic iter SetGraphicsParams

graphic delay SetGraphicsParams

quit at end
frame thickness SetFrameStyle

frame color SetFrameStyle

grid thickness SetGridStyle

grid color SetGridStyle

background color SetBackgroundStyle

display size SetMoleculeStyle

color SetMoleculeStyle

tiff iter SetTiffParams

tiff name SetTiffParams

tiff min SetTiffParams

tiff max SetTiffParams

light SetLightParams

text color SetTextStyle

116

text display AddTextDisplay

Run-time commands

output root SetOutputPath

output files AddOutputFile

output data AddOutputData

output precision
append files AddOutputFile

output file number AddOutputFile

output format
cmd AddCommand

AddCommandFromString

N/A getOutputData

Surfaces

start surface AddSurface

new surface AddSurface

* name AddSurface

N/A GetSurfaceIndex

N/A GetSurfaceName

* action SetSurfaceAction

* action rule
* rate SetSurfaceRate

* rate rule
* rate internal SetSurfaceRate

* rate internal rule
* neighbor action
* color SetSurfaceFaceStyle

SetSurfaceEdgeStyle

* thickness SetSurfaceEdgeStyle

* stipple SetSurfaceEdgeStyle

* polygon SetSurfaceFaceStyle

* shininess SetSurfaceFaceStyle

* panel AddPanel

N/A GetPanelIndex

N/A GetPanelName

* jump SetPanelJump

* neighbors AddPanelNeighbor

* unbounded emitter AddSurfaceUnboundedEmitter

* end surface N/A
epsilon SetSurfaceSimParams

margin SetSurfaceSimParams

neighbor dist SetSurfaceSimParams

Compartments

start compartment AddCompartment

new compartment AddCompartment

* name AddCompartment

N/A GetCompartmentIndex

N/A GetCompartmentName

117

17. Quick function guide

* surface AddCompartmentSurface

* point AddCompartmentPoint

* compartment AddCompartmentLogic

* end compartment N/A

Reactions

reaction AddReaction

N/A GetReactionIndex

N/A GetReactionName

reaction compartment=... SetReactionRegion

reaction surface=... SetReactionRegion

reaction rule
reaction rate AddReaction

SetReactionRate

reaction multiplicity
confspread radius SetReactionRate

binding radius SetReactionRate

reaction probability SetReactionRate

reaction chi
reaction production SetReactionRate

product placement SetReactionProducts

expand rules
reaction serialnum
reaction intersurface
reaction log
reaction log off

Ports

start port AddPort

new port AddPort

* name AddPort

N/A GetPortIndex

N/A GetPortName

* surface AddPort

* face AddPort

* end port N/A
N/A AddPortMolecules

N/A GetPortMolecules

Rule-based modeling with BioNetGen

start bng
end bng
name
BNG2 path
multiply unimolecular rate
multiply bimolcular rate
monomer
monomers
monomer difc
monomer display size

118

monomer color
monomer state
expand rules

Lattices

start lattice
* name
* type
* port
* boundaries
* lengthscale
* species
* make particle
* reaction
* reaction move
* mol
* end lattice

Simulation settings

random seed SetRandomSeed

accuracy not supported
molperbox SetPartitions

boxsize SetPartitions

gauss table size not supported
epsilon SetSurfaceSimParams

margin SetSurfaceSimParams

neighbor dist SetSurfaceSimParams

Libsmoldyn actions

N/A UpdateSim

N/A RunTimeStep

N/A RunSim

N/A RunSimUntil

N/A FreeSim

N/A DisplaySim

N/A PrepareSimFromFile

119

18. Statements

18.1. Statements about the configuration file

text

Single-line comment. A # symbol indicates that the rest of the line is a comment.

/* text */

Multi-line comment. All lines between /* and the following */ are ignored. These must be
the first “words” on a line. Additional text on these lines is ignored as well. In future versions,
the syntax of these may be changed so as to be identical to C-style block comments.

read file filename

Read some other configuration file, returning to the present one when that one has been read.

end file

End of configuration file. This line is optional (but good programming practice), as Smoldyn
can also just read until the file ends.

quit at end value

Use a value of “yes” to tell the simulator to quit the program at the end of the simulation,
during simulations that use graphics. This has no effect if simulations do not use graphics.
Use “no” to turn this off, which is the default behavior. This same behavior can also be
achieved by creating and setting the shell environment variable SMOLDYN NO PROMPT to any
value.

define key substitution

Definition of macro replacement text. Throughout the remainder of this configuration file,
but not files that are called by it, all incidents of the string key are replaced with the
string substitution before further parsing is performed. It is permissible to not include any
substitution text.

define global key substitution

Definition of macro replacement text, which is identical to define, except that this definition
applies throughout both this file and all files that are called by it. Global definitions can also
be entered on the command line using the --define option.

undefine key

Removes a macro substitution definition that was made previously, whether global or local.
Global undefines apply to this file and all files that are called by it, but not to a file that
called this one. Entering key as “all” undefines all definitions.

121

18. Statements

ifdefine key

The following lines of the configuration file are read only if key is a term that was defined with
define or define global (or was defined automatically, which includes FILEROOT). Reading,
or not reading, continues to any else statement. The end of the condition is given with the
endif statement.

ifundefine key

This is identical to ifdefine, except that reading continues only if key has not been defined.

else

This is the else condition which is supposed to follow an ifdefine or ifundefine statement.

endif

This ends a condition that is started by an ifdefine or ifundefine statement.

display define

Causes all current definitions to be displayed to the standard output. This is only useful for
debugging define issues in configuration files.

18.2. Statements about variables

variable var = value

Sets the value of variable var to value, which needs to evaluate to a numerical value. Note
that spaces and the equals sign are required.

18.3. Statements about space and time

dim dim

Dimensionality of the system, between 1 and 3.

boundaries dim pos1 pos2
boundaries dim pos1 pos2 type

Creates lower and upper boundaries to define the simulation volume on dimension dim. The
dim value should be “x”, “y”, or “z” (however, 0, 1, and 2 work as well). These boundaries
are located at pos1 and pos2. Using the first format, which is advised for systems that include
surfaces, boundaries are created that are transparent to molecules, meaning that they do not
contain or otherwise interact with molecules. Surfaces need to be defined to keep molecules in
the system. The second format is preferable for systems that do not include any surfaces. In
this case, the boundary type can be “r” for reflective, “t” for transparent, “a” for absorbing,
or “p” for periodic. For most purposes, this statement replaces the low wall and high wall

statements.

low wall dim pos type

This statement has been largely superseded by boundaries. This creates a lower boundary for
the simulation volume. This wall is perpendicular to the dimension dim (“x”, “y”, or “z”)
such that all locations between pos and the position of the corresponding upper boundary are

122

18.4. Statements about molecules

considered to be within the simulation volume. The type of wall is given in type, which should
be one of four single letter codes: “r” means a reflecting wall, “p” means a periodic wall (also
called wrap-around or toroidal), “a” means an absorbing wall, and “t” means a transparent
wall. Transparent walls imply an unbounded system and may lead to slow simulations. If any
surfaces are defined for the simulation, then walls still must be entered to define the system
volume, but these walls are essentially non-functional (the sole exception is that reactions can
occur across periodic walls). Additional surfaces need to be defined to serve as the system
boundaries.

high wall dim pos type

This statement has been largely superseded by boundaries. This is identical to the definition
for low wall, although this creates the upper boundary for the simulation volume.

time start time

Starting point for simulated time.

time stop time

Stopping time of simulation, using simulated time. The simulation continues past the
time stop value by less than one time step.

time step time

Time step for the simulation. Longer values lead to a faster runtime, while shorter values
lead to higher accuracy. Also, longer values lead to bimolecular reactions that behave more
as though they are activation limited, rather than diffusion limited.

time now time

Another starting time of simulation. Default value is equal to time start. If this time is
before time start, the simulation starts at time start; otherwise, it starts at time now.

18.4. Statements about molecules

species name1 name2 ... namen

Names of one of more molecular species present in the system. Standard naming conventions
are followed, in that the name should start with a letter and spaces are not permitted.

species group group species1 species2 ...

Defines a group of species called group and adds species1, species2, and potentially other
species to this group. Empty groups are allowed. Any number of species can be added. If the
group already exists, the named species will be added to the existing group. These groups
can be used in most statements and commands that have species inputs, where they enable
operations on multiple species at once. However, they cannot be used in reactions.

difc species value
difc species(state) value
difc rule species(state) value

Isotropic diffusion coefficient of molecule type species. Default value is 0. The state, which is
optional, refers to the surface-bound state of the molecule: solution, front, back, up, or down;

123

18. Statements

if omitted, only the solution state is set with this statement. name may be “all” and/or state
may be “all” to set diffusion coefficients for multiple species at once. If the rule form is used
(generally with wildcard characters), then the statement is not applied immediately but is
stored for use during rule expansion; during rule expansion, it is applied to all species that
match the given species pattern.

difm species float0 float1 ... f loatdim∗dim−1

difm species(state) float0 float1 ... f loatdim∗dim−1

difm rule species(state) float0 float1 ... f loatdim∗dim−1

Square root of diffusion matrix of species and maybe state state (the dot product of this
matrix and itself is the anisotropic diffusion matrix). The matrix has dim2 terms (dim is
the system dimensionality), listed row by row of the matrix; the matrix is supposed to be
symmetric. If this line is not entered, isotropic diffusion is assumed, which leads to a faster
runtime. While a matrix is used for diffusion if one is given, the value stored with difc is used
for reaction rate calculations. If difc is not entered, the trace of the square of this matrix,
divided by the system dimensionality, is used as a proxy for the isotropic diffusion coefficient
to allow reaction rates to be estimated. This line is most useful for restricting diffusion to
a plane or a line, in which case the square root of the diffusion coefficient is given for each
diagonal element of the matrix where there is diffusion and 0s are place on diagonal elements
for axes where diffusion is not possible, as well as on off-diagonal elements. species and or
state may be “all” to set diffusion matrices for multiple species at once. If the rule form is
used (generally with wildcard characters), then the statement is not applied immediately but
is stored for use during rule expansion; during rule expansion, it is applied to all species that
match the given species pattern.

drift species float0 float1 ... f loatdim−1

drift species(state) float0 float1 ... f loatdim−1

drift rule species(state) float0 float1 ... f loatdim−1

Drift velocity vector for molecules of type species and maybe state state. The vector has
dim terms (dim is the system dimensionality). If this line is not entered, there is no net
drift. species and/or state may be “all” to set drift vectors for multiple species at once. If
the rule form is used (generally with wildcard characters), then the statement is not applied
immediately but is stored for use during rule expansion; during rule expansion, it is applied
to all species that match the given species pattern.

surface drift species(state) surface panel − shape float0 ... f loatdim−2

surface drift rule species(state) surface panel − shape float0 ... f loatdim−2

Drift velocity vector for molecules of type species and state state, relative to the local
coordinates of the panel to which these molecules are bound. The vector has dim− 1 terms
(dim is the system dimensionality), which are for the natural coordinate system of the local
panel. species and/or state may be “all” to set drift vectors for multiple species and surface-
bound states at once. If the rule form is used (generally with wildcard characters), then the
statement is not applied immediately but is stored for use during rule expansion; during rule
expansion, it is applied to all species that match the given species pattern.

mol nmol species pos0 pos1 ... posdim−1

Simulation starts with nmol type species molecules at location pos. Each of the dim elements
of the position may be a number to give the actual position of the molecule or molecules;

124

18.5. Statements about graphics

or the letter “u” to indicate that the position for each molecule should be a random value
between the bounding walls, chosen from a uniform density; or a position range which is given
as two numbers separated with a hyphen.

surface mol nmol species(state) surface pshape panel pos0 pos1 ... posdim−1

surface mol nmol species(state) surface pshape panel

Creates surface-bound molecules. nmol molecules of type species are created on the surface
named surface, on the panel with shape pshape and name panel. They are all put in state
state, which can be “front”, “back”, “up”, or “down”. If additional text is entered, it needs
to be the Cartesian coordinates of the molecules, all of which are put at the same spot and on
the same panel. If the coordinates are not given, the molecules are placed randomly on the
surface with a constant density, on average. For randomly placed molecules, it is permissible
to enter “all” for the panel, the pshape, and/or the surface.

compartment mol nmol species compartment

Creates nmol solution-phase molecules of type species in the compartment named
compartment.

molecule lists listname1 listname2 ...

Creates and names a set of molecule lists, for molecules that are in the system. This statement
may be called multiple times.

mol list species listname
mol list species(state) listname
mol list rule species(state) listname

Assigns all molecules that are in the system and of type species and state state (if state is not
specified, then only the solution state is assigned) to the list called listname. If the rule form
is used (generally with wildcard characters), then the statement is not applied immediately
but is stored for use during rule expansion; during rule expansion, it is applied to all species
that match the given species pattern.

max mol int

Optional statement (it was required up to version 2.22). This tells Smoldyn to terminate if
more than this many molecules end up being used for the simulation.

18.5. Statements about graphics

graphics str

Type of graphics to use during the simulation. The options are “none” for no graphics,
“opengl” for basic and fast OpenGL graphics, “opengl good” for fair quality OpenGL
graphics, and “opengl better” for pretty good graphics. Runtime gets slower with better
quality. If this line is not entered, no graphics are shown.

graphic iter int

Number of time steps that should be run between each update of the graphics. Default value
is 1.

125

18. Statements

graphic delay float

Minimum amount of time in milliseconds that Smoldyn should pause between successive
graphics updates. Default is 0.

quit at end yes/no

Whether Smoldyn should quit running as soon as the simulation is complete or not. Enter
yes (or 1) if it should and no (or 0) if not. The same behavior can be achieved by creating
and setting the shell environment variable SMOLDYN NO PROMPT.

frame thickness int

Thickness of the frame that is drawn around the simulation volume, in points. Default value
is 2.

frame color color [alpha] frame color red green blue [alpha]

Color of the frame. All values should be between 0 and 1; use all 0s for black and all 1s for
white (default). The alpha value is optional and also useless.

grid thickness int

Thickness of the grid lines that can be drawn to show the virtual boxes. Default value is 0,
so that the grid is not drawn.

grid color color [alpha]
grid color red green blue [alpha]

Color of the grid. All values should be between 0 and 1; use all 0s for black and all 1s for
white (default). The alpha value is optional and also useless.

background color color [alpha]
background color red green blue [alpha]

Color of the background. All values should be between 0 and 1; use all 0s for black and all
1s for white (default). The alpha value is optional and may not work anyhow.

display size species float
display size species(state) float
display size rule species(state) float

Size of molecule of type species for display to the graphical output. If the surface state is
omitted, as in the first form shown, this display size applies to all molecule states; otherwise
it applies to only the state listed. These states may be “solution”, “front”, “back”, “up”,
“down”, or “all”. The default value is 3, indicating that each molecule is displayed with
a small square; 0 indicates that a molecule should not be displayed and larger numbers
yield larger squares. If the rule form is used (generally with wildcard characters), then the
statement is not applied immediately but is stored for use during rule expansion; during rule
expansion, it is applied to all species that match the given species pattern.

color species(state) color [alpha]
color species(state) red green blue [alpha]
color rule species(state) red green blue [alpha]

Color for displaying molecules of type species. If the surface state is omitted, this color
applies to just the solution state. States may be “solution”, “front”, “back”, “up”, “down”,

126

18.6. Statements about run-time commands

or “all”. Colors can be words, or can be given with red, green, and blue values, each of which
should be between 0 and 1. Default values are 0 for each parameter, which is black. Entering
alpha is optional and useless. If the rule form is used (generally with wildcard characters),
then the statement is not applied immediately but is stored for use during rule expansion;
during rule expansion, it is applied to all species that match the given species pattern.

tiff iter int

Number of time steps that should be run between each automatic saving of a TIFF file.
Default value is 0, meaning that TIFFs should not be saved automatically.

tiff name name

Root filename for TIFF files, which may include path information if desired. Default is
OpenGL, which leads to the first TIFF being saved as “OpenGL001.tif”.

tiff min int

Initial suffix number of TIFF files that are saved. Default value is 1.

tiff max int

Largest possible suffix number of TIFF files that are saved. Once this value has been reached,
additional TIFFs cannot be saved. Default value is 999.

light number parameter color [value4]
light number parameter value1 value2 value3 [value4]

Set the parameters for a light source, for use with “opengl better” quality graphics. The light
number should be between 0 and 7. The parameter may be one of four strings: “ambient”,
“diffuse”, “specular”, or “position”. The first three parameters are for the light’s colors, which
are then specified with either a word or in the values as red, green, blue, and optionally alpha.
The last parameter type is for the light’s 3-dimensional position, which is specified as x, y,
and z in the values. Lights specified this way are automatically enabled (turned on).

text color color
text color red green blue

Color for text displayed on the graphics window.

text display item1 item2 ...

Turns on text display of the listed items, which are listed as strings. Possible items are
“time”, which is the simulation time, and species names and states (entered as species(state)),
for which the number of molecules of that species and state are displayed. Wildcards are
permitted.

18.6. Statements about run-time commands

output root str

Root of path where text output should be saved. Spaces are permitted. Output files are
saved in the same folder as the configuration file, modified by this string. See the description
for output files. Make sure that the destination folder has been created and that the string
is terminated with a colon (and started with a colon if needed).

127

18. Statements

output files str1 str2 ... strn

Declaration of filenames that can be used for output of simulation results. Spaces are not
permitted in these names. Any previous files with these names will be overwritten. The path
for these filenames starts from the configuration file and may be modified by a root given
with output root. For example, if the configuration file was called with “folder/config.txt”
and output root was not used, then the output file “out.txt” will appear in the directory
“folder” too. If the configuration file was called with “folder/config.txt” and the output root
was given as “results/”, then the output file goes to the results sub-directory of the directory
“folder”. The filename “stdout” results in output being sent to the standard output (this
does not need to be declared with the output files statement).

output data str1 str2 ... strn

Declaration of data names that can be used for output of simulation results. These are like
output files but are stored in memory rather than as separate files, and they go away when
Smoldyn ends. These data files are primarily designed for use with Libsmoldyn, as opposed
to the stand-alone software.

output precision int

The precision that will be used for numerical output from commands, meaning the number of
digits displayed after a decimal point. Enter a negative number for the default and a positive
number for fixed precision. For example, if you enter 5, then the output format string will be
“%.5g”.

append files str1 str2 ... strn

Identical to output file, except that the prior contents of these files are not overwritten,
but are appended to.

output file number int

Starting number of output file name. The default is 0, meaning that no number is appended
to a name (e.g. the file name “out.txt” is saved as “out.txt”). A value larger than 0 leads to
an appended file name (if 1 is used, then “out.txt” is actually saved as “out 001.txt”). Note
that the command incrementfile increments the file number before it runs the rest of the
command.

output format str

Set the output format for all observation commands. Options are the string “ssv”, which is
the default, or the string “csv”.

cmd b,a,e string
cmd @ time string
cmd n int string
cmd i on off dt string
cmd j onit offit dtit string
cmd x on off dt xt string

Declaration of a command to be run by the run-time interpreter, where the final portion
labeled string is the actual command. The character following cmd is the command type,
which may be “b” for before the simulation, “a” for after the simulation, “e” for every time
step during the simulation, “@” for a single command execution at time time, “n” for every

128

18.7. Statements about surfaces

n’th iteration of the simulation, “i” for a fixed time interval, “x” for a fixed time multiplier,
or “j” for every dtit step with a set starting iteration and stopping iteration. For type “i”, the
command is executed over the period from on to off with intervals of at least dt (the actual
intervals will only end at the times of simulation time steps). For type “x”, the command is
executed at on, then on+ dt, then on+ dt ∗ xt, then on+ dt ∗ xt2, and so forth. See section
2.4 for the commands that are available.

max cmd int (obsolete statement)

Maximum length of command queue. Default value is 10. As of version 1.55, this statement
is no longer needed in configuration files, because the command queue is now expanded as
needed.

18.7. Statements about surfaces

The statements shown below that are preceded by an asterisk need to be entered within surface
blocks, which start with start surface and end with end surface. These statements can also be
entered directly, meaning not in a surface block, by preceding the statement with surface and then
the surface name.

max surface int (obsolete statement)

As of version 2.19, this statement is optional. If used, it specifies the maximum number of
surfaces that will be defined. Each surface may have many panels, including disjoint panels.

start surface [name]

Start of surface definition block. The surface name may be given with name, or it may be
given afterward with the name statement. If the name has not been used yet for a surface,
then a new surface is started. Between this instruction and end surface, all lines need to
pertain to surfaces. Parameters of one surface can be listed in multiple blocks, or parameters
for many surfaces can be listed in one block.

new surface name

Defines a new surface called name, but does not start a surface block. This statement is
largely redundant with start surface.

* name name

Name of the surface for editing. This statement is not required because the surface name can
also be given with start surface. This statement gives the name of the current surface for
editing, and creates a new surface if needed.

* action species(state) face action [new spec]
* action rule species(state) face action [new spec]

The behavior of molecules named species (and in state state, which is assumed to be solution
if it’s not entered) when they collide with the face face of this surface. face can be “front”,
“back”, or “both”. If species is “all”, then this action applies to all molecules. The action
can be “reflect”, “absorb”, “transmit”, “jump”, “port”, or “periodic.” If new spec is entered,
then the molecule changes to this new species upon surface collision. In addition, it’s
permissible to enter the action as “multiple,” in which case the rates need to be set with

129

18. Statements

rate; alternatively, just setting the rates will automatically set the action to “multiple.” The
default is transmission for all molecules. If the rule form is used (generally with wildcard
characters), then the statement is not applied immediately but is stored for use during rule
expansion; during rule expansion, it is applied to all species that match the given species
pattern.

* rate species(state) state1 state2 value [new spec]
* rate rule species(state) state1 state2 value [new spec]

The rate constant for transitions from state1 to state2 of molecules named species at this
surface. For the species name, in species, “all” is permitted; however, “all” is not permitted
anywhere else. Usually, state is omitted, but see below for where it is needed. state1
and state2 can be any of: fsoln, bsoln (in solution, hitting the front or back of the panel,
respectively), front, back, up, or down. value is the rate constant or rate coefficient; enter it
as −1 if you want the maximum possible value, typically meaning that the probability gets
set to 1 (however, it may get set to a lower value if the rate of the reverse process is also set
to −1, in which case both probabilities are chosen to maintain the appropriate equilibrium
constant). If new spec, which is an optional parameter, is entered, then molecules change
to the listed species at the same time as changing states. If the rule form is used (generally
with wildcard characters), then the statement is not applied immediately but is stored for
use during rule expansion; during rule expansion, it is applied to all species that match the
given species pattern.

To specify interaction rates for molecules that collide with surface B, while diffusing along
surface A, use the first state parameter. In this case: state is the starting surface-bound
state on surface A; state1 is fsoln to indicate collision with the front side of surface B or bsoln
to indicate collision with the back side of surface B; and state2 is fsoln or bsoln to indicate
transmission through surface B and still bound to surface A (but cannot equal state1) or
state2 can be a surface-bound state to indicate that the molecule hops from surface A to
surface-bound on surface B.

* rate internal species(state) state1 state2 value [new spec]
* rate internal rule species(state) state1 state2 value [new spec]

This is identical to rate, except that a slightly different value is entered. Instead of entering
the surface action rate, enter the probability of the action at each collision. Probabilities for
reflection are ignored since they are calculated as the probability that the molecule does not
transmit, absorb, or jump. If the rule form is used (generally with wildcard characters), then
the statement is not applied immediately but is stored for use during rule expansion; during
rule expansion, it is applied to all species that match the given species pattern.

*neighbor action action

Behavior of surface-bound molecules when they collide with a panel that is a neighbor of the
panel that they are bound to. There are only two options: “hop” indicates that the molecule
should hop onto the new panel with a 50% probability and stay with a 50% probability, and
“stay” indicates that the molecule should stay on its own surface. The default is “stay”.

* color face color [alpha]
* color face red green blue [alpha]

Color of the face face of the surface. face can be “front”, “back”, or “both”. In the first
format, color is a single word color, such as “red”, “green”, “magenta”, “cyan”, etc. In the

130

18.7. Statements about surfaces

second format, color values are numbers between 0 and 1, where 1 is maximum intensity a
0 is minimum (1 1 1 is white). The alpha value is optional and describes the opacity of the
surface. If entered, it also needs to be between 0 and 1, where 1 is an opaque object (the
default) and 0 is transparent. OpenGL graphics do not work well with non-integer alpha
values, so don’t expect good results.

* thickness float

Boldness of the surface in pixels for drawing purposes. This is only relevant for 1-D and 2-D
simulations, and for 3-D simulations in which surfaces are drawn with just vertices or edges
and not faces.

* stipple factor pattern

Stippling of the surface edges, for drawing purposes. This is only relevant for 3-D simulations
in which surfaces are drawn with just edges and not faces, and with “opengl good” or better
display method. In factor, which is an integer, enter the repeat distance for the entire
stippling pattern (1 is a good choice). In pattern, which is a hexadecimal integer, enter the
stippling pattern between 0x0000 and 0xFFFF. 0x00FF has long dashes, 0x0F0F has medium
dashes, 0x5555 has dots, etc. Turn stippling off with 0xFFFF.

* polygon face drawmode

Drawing method for the face face of the surface. face can be “front”, “back”, or “both”.
drawmode may be “none”, “vertex”, “edge”, “face”, or combinations of “v”, “e”, or “f” for
multiple renderings of vertices, edges, and/or faces. 2-D spheres and hemispheres are either
filled or are outlined depending on the polygon front character. If multiple renderings are
chosen in 3D, then panel faces are shown in the requested color and other renderings are
shown in black.

* shininess face value

Shininess of the surface for drawing purposes. This value can range from 0 for visually flat
surfaces to 128 for very shiny surfaces. This is only relevant for some simulations.

* max panels shape int (obsolete statement)

Optional statement. This can be used to allocate memory for int panels of shape shape for
this surface, although it is usually best to let Smoldyn allocate memory as needed. The shape
may be “rect” for a rectangle, “tri” for a triangle, “sph” for a sphere, “cyl” for a cylinder,
“hemi” for a hemisphere, or “disk” for a disk. The surface can include panels with different
shapes.

* panel shape float ... f loat [name]

Defines a new panel for the surface, where the panel has shape shape. The shape may be
“rect” for a rectangle, “tri” for a triangle, “sph” for a sphere, “cyl” for a cylinder, “hemi” for
a hemisphere, or “disk” for a disk. Following the shape are numbers for the panel position,
where these depend on the shape. At the end, it is possible to enter a string to name the
panel, although this is optional (default names are the numbers 0, 1, 2, ...; names are used
for jump surfaces). If the name was used before, then this does not create a new panel, but
modifies the existing panel.

For “rect”, enter the axis number that the rectangle is perpendicular to, preceded by a “+”
if the panel front faces the positive axis and a “-” if it faces the negative axis (these signs

131

18. Statements

must be entered); then enter the coordinates of a corner point; then enter the dimensions
of the rectangle in sequential order of the axes, omitting the one that it is perpendicular to.
These dimensions are better called displacements because they are added to the corner that
is entered, so they may be positive or negative. For example, for a square in a 3-D system
that is perpendicular to the y-axis, has sides of length 10 and is centered about the origin,
enter: “panel rect +1 -5 0 -5 10 10”. This same square could be entered as “panel rect +1 5
0 5 -10 -10”, or with other descriptions. A rectangle is always perpendicular to an axis.

For “tri”, enter the coordinates of the corners of the triangle. This is one number for 1-D;
4 for 2-D, and 9 for 3-D. For 1-D, the front of the triangle always faces the positive axis;
rectangles are completely equivalent and more versatile. For 2-D, triangles are really lines
and the front side of the line is the side on the right when traveling in sequential order of the
points that are entered. For 3-D, the triangle front is determined by the winding direction of
the corners: if one is facing the front, the points wind counterclockwise. Unlike rectangles,
triangles do not have to be perpendicular to axes.

For “sph”, enter the coordinates of the sphere center followed by the sphere radius and
some drawing information. For 1-D, the center coordinate is a single number and the radius
is entered next. For 2-D, the center coordinates are 2 numbers and then enter the radius
followed by the number of sides on the polygon that should be drawn to represent the circle.
For 3-D, the center coordinates are 3 numbers and then enter the radius, followed by the
number of slices (longitude lines) and stacks (latitude lines) that are used for drawing the
sphere. In the 2-D and 3-D cases, the drawing entries are used only for drawing; the circle or
sphere functions as an accurate smooth shape. For all dimensions, enter a positive radius to
have the front of the surface on the outside and a negative radius for it to be on the inside.

For “cyl”, enter the coordinates of the cylinder-axis start point and the cylinder-axis end point,
then the radius, and then drawing information if appropriate. Cylinders are not permitted
in 1-D. In 2-D, two numbers give the start point and two give the end point, followed by the
radius. No drawing information is needed. In 3-D, enter three numbers for the start point,
three for the end point, the radius, and then the number of slices and the number of stacks.
For all dimensions, enter a positive radius to have the front of the surface on the outside and
a negative radius for it to be on the inside.

For “hemi”, enter the coordinates of the hemisphere center, the radius, and then the vector
that points straight out of the hemisphere. Hemispheres are not permitted in 1-D. In 2-D, the
center coordinates are 2 numbers, the radius is 1 number, the outward vector is 2 numbers,
and finally enter the number of slices. For 3-D, the center is 3 numbers, the radius is 1
number, the outward vector is 3 numbers, and then enter 2 numbers for the numbers of slices
and stacks. The outward pointing vector does not need to be normalized to unit length. For
all dimensions, enter a positive radius to have the front of the surface on the outside and a
negative radius for it to be on the inside.

For “disk”, enter the coordinates of the disk center, the radius, a vector that points away
from the front of the disk, and drawing information if appropriate. Disks are not permitted
in 1-D. In 2-D, the center coordinates are 2 numbers, the radius is 1 number, and the normal
vector is 2 numbers. For 3-D, the center coordinates are 3 numbers, the radius is 1 number,
the normal vector is 3 numbers, and the number of drawing slices is entered last. Normal
vectors do not need to have unit length.

* jump panel1 face1 -> panel2 face2
* jump panel1 face1 <-> panel2 face2

132

18.8. Statements about compartments

Defines a molecule jumping condition for a face of a single panel. This panel has name panel1,
and face face1. The name of a panel can be defined with the panel statement, or the default
is just the shape and panel number (rect0, sph5, etc.). A molecule that hits this face of
the panel, and that has “jump” action for this face, gets translated to the face face2 of the
panel panel2 (which needs to be the same shape as the originating panel). A unidirectional
arrow implies just jumping from the first panel to the second, whereas a double-headed arrow
implies jumping in both directions.

* neighbors panel neigh1 neigh2 ...

Defines a list of panels that neighbor the panel named panel. Surface-bound molecules can
only diffuse from a panel to its neighbor if the neighbors are defined in this way. This
statement is unidirectional in that it only sets, for example, neigh1 as a neighbor of panel
panel but not vice versa. If the neighboring panel is not part of the same surface as the origin
panel, then specify the neighboring panel using surface : panel.

* unbounded emitter face species amount pos0 pos1 ...posdim−1

Declares a molecular source for which this surface should absorb molecules so as to yield
a concentration distribution that is the same as that which would arise with unbounded
diffusion. This statement does not create the molecular source, but only sets the panel
absorption coefficients to yield the correct concentrations, assuming the emitter is created
elsewhere (such as with a command or a zeroth order reaction). face is the side of the surface
that faces the emitter, species is the emitted molecular species, amount is the emission rate
(it only matters if there is more than one emitter for this surface and species, and then
it is only the relative rates of the different emitters that matters), and pos is the system-
dimensional position of the emitter. This statement is designed to be used with all emitters
strictly inside a closed surface and all of them with positive amount values; however, neither
of these criteria are checked, so other options can be used although no promises are made
regarding their behaviors.

* end surface

End of a block of surface definitions. Surface statements are no longer recognized but other
simulation statements are.

epsilon float

See “simulation settings” section. This is not entered in a surface block.

margin float

See “simulation settings” section. This is not entered in a surface block.

neighbor dist float

See “simulation settings” section. This is not entered in a surface block.

18.8. Statements about compartments

The statements shown below that are preceded by an asterisk need to be entered within
compartment blocks, which start with start compartment and end with end compartment. Most
of these statements can also be entered directly, preceded by the statement compartment and then
the compartment name. Both forms are shown below.

133

18. Statements

start compartment name

Start of compartment definition block. The compartment name may be given with name,
or it may be given afterwards with the name statement. If the name has not been used
yet for a compartment, then a new compartment is started. Between this instruction and
end compartment, all lines need to pertain to compartments. Parameters of one compartment
can be listed in multiple blocks, or parameters for many compartments can be listed in one
block.

new compartment name

Defines a new compartment called name, but does not start a compartment block. This
statement is largely redundant with start compartment.

* name name

Name of the compartment for editing. This statement is not required because the
compartment name can also be given with start compartment. This statement gives the
name of the current compartment for editing, and creates a new compartment if needed.

* surface surface

Name of a bounding surface for this compartment.

* point pos0 ... posdim−1

An interior-defining point for this compartment.

* compartment logiccompartment

Logically combines the compartment being defined as it has been defined so far with the
compartment that is listed in this statement. The logic options are: “equal”, “equalnot”,
“and”, “andnot”, “or”, “ornot”, and “xor”.

* end compartment

End of a block of compartment definitions. Compartment statements are no longer recognized
but other simulation statements are.

18.9. Statements about reactions

reaction rname reactant1 + reactant2 -> product1 + product2 rate
reaction rname reactant1 + reactant2 <-> product1 + product2 ratefwd raterev
reaction compartment= cname rname reactant1 + reactant2 -> product1 +
product2 rate
reaction surface= sname rname reactant1 + reactant2 -> product1 + product2 rate

The first form defines a new reaction which is named rname, has a list of reactants, a list of
products, and rate equal to rate. If there are no reactants, meaning that it is zeroth order,
enter “0” as the reactant. Similarly, if there are no products, enter “0” as the sole product.
The rate value is optional. As usual, enter species states in parentheses after the species
names; “all” is permitted for reactant states, but not for product states.

The second form shows that reversible reactions can be defined using essentially the same
statement, but with <-> for the arrow and, optionally, with two rate constants. In this case,
the reaction name is appended with “fwd” for the forward reaction and with “rev” for the

134

18.9. Statements about reactions

reverse reaction. Entering a reversible reaction in this way is completely equivalent to entering
it as two one-way reactions; it has no effect on the product placement, the binding radius, or
other parameters.

If this reaction should only occur in a specific compartment, enter it with the format
“compartment=cname” (no spaces) as one of the first parameters. Likewise, if this reaction
should only occur on a specific surface, enter it with the format “surface=sname” as one of
the first parameters. These restrictions can be combined.

reaction rule rname reactant1 + reactant2 -> product1 + product2 rate

This is essentially identical to the reaction statement, including that it allows the same
reversibility notation and compartment and surface restrictions. It differs in that any products
that are listed here but that have not been declared previously using the species statement,
get created at this point. When used with wildcards, this statement enables rule-based
modeling.

reaction rate rname rate

Sets the rate constant to rate for reaction named rname.

reaction multiplicity rname multiplicity

Sets the multiplicity value to multiplicity for reaction named rname. This value is set to 1
by default, but can be changed if there are multiple different ways for a single reaction to
occur. The requested reaction rate is multiplied by the multiplicity to give the total reaction
rate. Internally, this is an important parameter for rule-based modeling, but the value should
generally not be set using this statement.

confspread radius rname rad

Defines reaction rname as a conformational spread reaction. This reaction must have two
reactants and up to two products. If it has two products, which is the most common case,
then the first reactant gets replaced by the first product, and the second with the second.
They keep their serial numbers and locations. The reaction domain extends over the radius
that is listed here (this is effectively a binding radius). If this is entered, the reaction rate
constant is interpreted as a first order rate constant.

binding radius rname rad

Sets the binding radius of reaction rname to rad.

reaction probability rname prob

A fixed probability value for unimolecular or bimolecular reactions. For unimolecular
reactions, this is the probability of a reaction during one time step. For bimolecular reactions,
this is the probability of a reaction occurring, given that the reactants are already closer than
their binding radius. Here, the default value is 1, which is assumed in all rate calculations.
For conformational spread reactions, this value can be used to directly enter the reaction
probability at each time step, rather than letting it be calculated from the rate value. For
regular bimolecular reactions, this can be used to adjust the effective reaction activation
energy, although the theory has not been derived for that yet.

reaction chi rname chi

The diffusion-limited fraction (χ) of a bimolecular reaction. This value is the ratio of the
actual reaction rate constant to the diffusion-limited reaction rate constant.

135

18. Statements

reaction production rname value

Molecule production rate for zeroth order reactions. Instead of entering the reaction rate
with reaction rate, this allows on to enter the expectation number of molecules per time
step in the entire simulation volume.

product placement rname type parameters

Placement method and parameters for the products of reaction rname. This also affects
the binding radius of the reverse reaction, as explained in the text. The type irrev requires
no parameters. Types “pgem”, “pgemmax”, “pgemmaxw”, “ratio”, “unbindrad”, “pgem2”,
“pgemmax2”, and “ratio2” each require one parameter. Types “offset” and “fixed” each
require first a product molecule name and then a dim-dimensional vector as the parameter
list. If multiple products are identical, then this placement instruction will only be applied to
the first of the identical products. For this reason, you can also specify that this statement
applies to the n’th product by entering the product name as product n (e.g. product 2 for
the second product). The default placement method for reversible reactions is “pgemmaxw”
(the terminal “w” implies that a warning will be issued) with a parameter of 0.2. While it is
suggested that placement types be entered with full words, single letter codes work as well.

To create a “bounce” type reaction, for simulating excluded volume, enter the type as
“bounce”. In this case, enter no parameter for the default algorithm or one parameter.
The default algorithm, also entered with a -1 parameter, performs the overlap method, in
which the reactant edges get separated by the same amount as they used to overlap, along
their separation vector (e.g. consider two reactants each of radius 1, so the binding radius is
set to 2; then, if the center-to-center distance is found to be 1.6, the molecules get separated
to make the center-to-center distance equal to 2.4). Using a value of -2 performs the reflection
method, which appears to substantially less accurate (see Section 8.14). Alternatively, you
can use the parameter value to define the new separation, which should be larger than the
binding radius.

expand rules iterations

Expands all of the current reaction rules by iterations times. Enter iterations as -1 for
expansion to continue until all rules are fully up-to-date (which will run for a very long time
and then cause a termination if the rules create an infinite list of species).

reaction serialnum rname rule list

Define rules for product molecule serial number assignments during reaction rname. There
should be as many rule values as there are products for this reaction. The codes can be
separated by “+” symbols, as in the reaction definition, but this isn’t required. Product
options include: “new” for a new serial number (the default), “r1” or “r2” for the serial number
of the first or second reactant, or “p1” to “p4” for the serial number of the given product, or an
integer greater than zero for that value as the serial number. To use two-part serial numbers,
combine these with a dot, so for example, r1.r2 means that serial numbers for reactants 1
and 2 should be concatenated (only pairwise concatenation is supported). Specify a half of a
two-part serial number by suffixing the code with “R” for the right half (the default) or “L”
for the left half. For example, r1L and r1R are the left and right halves of the serial number
for reactant 1. Some of these options can lead to multiple molecules having the same serial
numbers, which is allowed but may lead to unexpected behavior in some runtime commands.
This statement cannot be used together with the reaction intersurface statement for the
same reaction.

136

18.10. Statements about ports

reaction intersurface rname rule list

Define rules to allow bimolecular reaction named rname to operate when its reactants are
on different surfaces. In general, there should be as many rule values as there are products
for this reaction. For each product choose “r1” if it should be placed on the first reactant’s
surface or relative to that surface, and “r2” if it should be placed on the second reactant’s
surface or relative to that surface (the relative conditions are for “soln” or “bsoln” state
products). The codes can be separated by “+” symbols, as in the reaction definition, but this
isn’t required. To turn off intersurface reactions, which is the default behavior, give rule list
as “off”. To turn on intersurface reactions for reactions that have no products, give rule list
as “on”. This statement cannot be used together with the reaction serialnum statement
for the same reaction.

reaction log filename rxnname serial numbers

Turns on reaction logging for all occurrences of the reaction rxnname and for molecules
with serial numbers that are in the serial number list. The logging is sent to the file called
filename. If the file is not “stdout”, then it should be declared with the output files

statement. Enter rxnname as “all” if all reactions should be logged. Likewise, enter the
serial number list as “all” if reactions with all molecules should be logged. In the logging file,
the output will be a single line of text for each occurrence of the reaction with the following
items: the current simulation time, the name of the reaction, the location of the reaction (2
numbers for 2D, 3 for 3D), the serial numbers of each reactant, and the serial numbers of each
product. If you request logging for a specific serial number, then an entry will be created if a
molecule with this serial number is either a reactant or a product of the reaction (however, if
it is the second or higher product, then the log entry will be missing the prior product serial
numbers because these are not recorded as they are generated). A specific reaction can only
be logged to a single place (e.g. either standard output or some file, but not both at once).

reaction log off rxnname serial numbers

Turns off reaction logging for the reaction rxnname and for molecules with serial numbers
that are listed in the serial number list. Either or both of rxnname and the serial number
list can be “all”.

18.10. Statements about ports

The statements shown below that are preceded by an asterisk need to be entered within port blocks,
which start with start port and end with end port. Most of these statements can also be entered
directly, preceded by the statement port and then the port name. Both forms are shown below.

start port name

Start of port definition block. The port name may be given with name, or it may be given
afterward with the name statement. If the name has not been used yet for a port, then a new
port is started. Between this instruction and end port, all lines need to pertain to ports.
Parameters of one port can be listed in multiple blocks, or parameters for many ports can be
listed in one block.

new port name

Defines a new port called name, but does not start a port block. This statement is largely
redundant with start port.

137

18. Statements

* name name

Name of the port for editing. This statement is not required because the port name can also
be given with start port. This statement gives the name of the current port for editing,
and creates a new port if needed.

* surface surface

Name of the porting surface for this port.

* face face

Face of the surface that is active for porting. Enter “front” or “back” for face.

* end port

End of a block of port definitions. Port statements are no longer recognized but other
simulation statements are.

max port int (optional)

Maximum number of ports that may be defined.

18.11. Statements for rule-based modeling with BioNetGen

The statements shown below that are preceded by an asterisk need to be entered within bng blocks,
which start with start bng and end with end bng. Most of these statements can also be entered
directly, preceded by the statement bng and then the bng network name. Both forms are shown
below.

start bng name

Start of BioNetGen block. The name is the network name. It may be given here or it may be
given afterwards with the name statement. If the name has not been used yet for a network,
then a network is started. Between this instruction and end bng, all lines need to pertain
to BioNetGen complexes. Parameters of one network can be listed in multiple blocks, or
parameters for many networks can be listed in one block.

end bng

End of a block of bng definitions. Bng statements are no longer recognized but other
simulation statements are.

name name

Name of the bng network for editing. This statement is not required because the network
name can also be given with start bng. This statement gives the name of the current network
for editing, and creates a new network if needed.

BNG2 path path

Directory path and complete filename of BNG2.pl software. The default path for Mac and
Linux systems is /usr/local/bin/BioNetGen/BNG2.pl and for Windows is C:
Program Files
Smoldyn
BioNetGen
BNG2.pl. The path parameter is allowed to have spaces in it.

138

18.12. Statements about filaments

multiply unimolecular rate value
multiply bimolecular rate value

Factor that will be multiplied with unimolecular and bimolecular reaction rates that are
listed in the current network. This statement is useful for converting units if the rules file
and Smoldyn file were written with different unit systems.

monomer monomer1 monomer2 ...
monomers monomer1 monomer2 ...

Declares one or more monomer names. This statement is optional because monomer names
are also inferred from the species long names and can be given using monomer state or other
monomer functions. This is primarily useful for enabling the use of the “all” designation for
monomers in other monomer statements.

monomer difc monomer difc

The diffusion coefficient for monomer called monomer. The monomer value can be a single
monomer or can be “all” for all currently declared monomers. A monomer has a single
diffusion coefficient, independent of its state.

monomer display size monomer size

The display size for monomer called monomer. The monomer value can be a single monomer
or can be “all” for all currently declared monomers. A monomer has a single display size,
independent of its state.

monomer color monomer color
monomer color monomer red green blue

The color for monomer called monomer. The monomer value can be a single monomer or
can be “all” for all currently declared monomers. The color can be either a color word or the
red, green, and blue color values. A monomer has a single color, independent of its state.

monomer state monomer state

The default state for a monomer. States can be any of: soln (same as fsoln), bsoln, front,
back, up, and down (this list is ordered from lowest to highest precedence). These states are
used when Smoldyn assigns states to reaction products, which are often composed of many
monomers.

expand rules filename

Filename for a rules file written in the BNGL language, which should have a .bngl suffix.
When Smoldyn encounters this statement, Smoldyn calls BNG2.pl to expand the file and
save it as a .net file but does not then read the result. After this line, include a read file

statement and list the filename, now with a .net suffix, so that Smoldyn reads in the expanded
network. There is typically very little error reporting if BNG2.pl encounters an error in the
.bngl file. To see the errors, run Smoldyn with the -v command line option, for verbose
operation, and then Smoldyn will display all of the BNG2.pl output.

18.12. Statements about filaments

The statements shown below that are preceded by an asterisk need to be entered within filament
type blocks, which start with start filament type and end with end filament type. Most of

139

18. Statements

these statements can also be entered directly, preceded by the statement filament type and then
the filament type name. Both forms are shown below.

start filament type name

Start of filament type definition block. The filament type name may be given with name,
or it may be given afterward with the name statement. If the name has not been used
yet for a filament type, then a new filament type is started. Between this instruction and
end filament type, all lines need to pertain to filament types. Parameters of one filament
type can be listed in multiple blocks, or parameters for many filament types can be listed in
one block.

dynamics dynamics

Sets the dynamics for the filament type. Options are: “RigidBeads”, “RigidSegments”,
“Rouse”, “Alberts”, “Nedelec”. These are case-insensitive.

biology biology

Sets the biology value for the filament type. Options are: “actin”, “microtubule”,
“intermediate”, “dsDNA”, “ssDNA”, and “other”. These are case-insensitive.

color color

Sets the drawing color for the filament type. Enter the color as either a color description as
a word or as RGBα values.

thickness thickness

Sets the drawing thickness for the filament type. Enter this in pixels if the graphics type is
“opengl” or as an actual length value for the better drawing options.

stipple factor pattern

Sets the stipple pattern and factor for filament drawing. This is only relevant for simulations
with “opengl good” or better display method. In factor, which is an integer, enter the
repeat distance for the entire stippling pattern (1 is a good choice). In pattern, which is
a hexadecimal integer, enter the stippling pattern between 0x0000 and 0xFFFF. 0x00FF
has long dashes, 0x0F0F has medium dashes, 0x5555 has dots, etc. Turn stippling off with
0xFFFF.

polygon drawmode

Drawing mode for filament surfaces. Options are: “vertex”, “edge”, “face”, or combinations
of these by using single letters for vertex, edge, and face, such as “ve”, “vef”, etc.

shininess value

Shininess of the filament for drawing purposes. This value can range from 0 for visually flat
surfaces to 128 for very shiny surfaces. This is only relevant for some simulations.

kT value

Set the thermal energy value, equal to Boltzmann’s constant times temperature. Enter this
in energy units that are consistent with other units in the input file. This is only used for
some of the dynamics options.

140

18.12. Statements about filaments

treadmill rate value

Some filaments treadmill, in which they drop off monomers at one end and add them to the
other end. Set the treadmilling rate here.

viscosity value

Viscosity of the surrounding medium.

bead radius value

Radius of the beads in these filaments. Used for hydrodynamic calculations.

standard length length

Relaxed length of a filament segment. It can change through stretching or compression.

standard angle yaw pitch roll

Relaxed angles between adjacent filament segments. When facing toward the filament’s front
end, yaw represents left-right bending, pitch represents up-down bending, and roll represents
rotation about the filament axis.

force length value

Stretching force constant for filament segments.

force angle yaw pitch roll

Force constants for bending and torsion.

end filament type

End of a block of filament type definitions. Filament type statements are no longer recognized
but other simulation statements are.

Filaments can be entered either in a block or with the single random filament statement. The
block statements shown below that are preceded by an asterisk need to be entered within filament
blocks, which start with start filament and end with end filament. Most of these statements
can also be entered directly, preceded by the statement filament and then the filament name (Not
functional currently). Both forms are shown below.

random filament name type segments [x y z]

Create a new filament with random segments. It is named name, is of type type, has segments
number of segments, and, optionally, has its starting location at (x, y, z).

start filament name

Start of filament definition block. The filament name may be given with name, or it may be
given afterward with the name statement. If the name has not been used yet for a filament,
then a new filament is started. Between this instruction and end filament, all lines need to
pertain to filaments. Parameters of one filament can be listed in multiple blocks, or parameters
for many filaments can be listed in one block.

* name name

Name of the filament for editing. This statement is not required because the filament name
can also be given with start filament. This statement gives the name of the current filament
for editing, and creates a new filament if needed.

141

18. Statements

type type

Filament type, which should already be defined in a filament type block.

first segment x y z length angle0 angle1 angle2 [thickness]

Defines the first segment of a filament. Enter the starting location in x, y, and z, the segment
length in length, and its absolute orientation with the angle values using spherical coordinates.
The thickness value is optional.

add segment length angle0 angle1 angle2 [thickness[end]]

Add a segment to the filament, with the given length. The angles are relative angles using
yaw-pitch-roll values, and the thickness is optional. The segment can be added to either end,
given in end, where the options are front or back.

remove segment end

Remove one segment from end end of the filament (“front” or “back”).

random segments number [x y z] [thickness]

Add number of random segments to the filament.

translate symbol x y z

Translate the filament. Set symbol to “=” for absolute coordinates, “+” for relative
translation in which the values are added to the current filament location, and “-” for relative
translation in the other direction.

copy filament

Copy monomers to the current filament from filament.

* end filament

End of a block of filament definitions. Filament statements are no longer recognized but other
simulation statements are.

18.13. Statements about lattices

The statements shown below that are preceded by an asterisk need to be entered within lattice
blocks, which start with start lattice and end with end lattice. Most of these statements can
also be entered directly, preceded by the statement lattice and then the lattice name. Both forms
are shown below.

start lattice name

Start of the lattice block. The lattice name may be given with name, or it may be given
afterwards with the name statement. If the name has not been used yet for a lattice, then a
new lattice is started. Between this statement and end lattice, all lines need to pertain to
lattices. Parameters of one lattice can be listed in multiple blocks, or parameters for many
lattices can be listed in one block.

142

18.13. Statements about lattices

* name name

Name of the lattice for editing. This statement is not required because the lattice name can
also be given with start lattice. This statement gives the name of the current lattice for
editing, and creates a new lattice if needed.

* type type

Type of the lattice. At present, this accepts two type strings, “nsv” and “pde”, which stand
for next-subvolume method and partial differential equation method, respectively. However,
only the NSV method has been implemented, so that’s the only type that should be entered.
This statement is optional, with NSV assumed if it is not entered.

* port port

Name of the port that the lattice uses to exchange molecules with the particle-based
simulation.

* boundaries dim pos1 pos2
* boundaries dim pos1 pos2 type

Creates lower and upper boundaries for the lattice region, where dim is the dimension that
is bounded in this statement, pos1 is the lower bound, and pos2 is the upper bound. In the
second form, type is a character that represents the boundary type, which may be “r” for
reflective or “p” for periodic. This syntax is essentially identical to the boundaries statement
that is used to define the particle-based simulation volume.

* lengthscale x1
* lengthscale x1 x2
* lengthscale x1 x2 x3

Specifies the partition spacing within the lattice region of space. Use the first form for 1D
systems, the second for 2D systems, and the third for 3D systems. The partition spacing
values should be even divisors of the lattice dimensions that are given with the boundaries

statement.

* species species1 species2 ...

List of species that should be used in the lattice region of space. These species need to have
been declared previously in the particle region of space. This line may be entered multiple
times. Rather than listing all species, the “all” keyword can be used to state that all of the
current particle-side species should also be used on the lattice side.

* make particle face species1 species2 ...

Causes all molecules of the listed species to be converted from lattice representation to particle
representation if they diffuse across the face called face (front, back, or both) of the lattice’s
port.

* reaction reaction1 reaction2 ...
* reaction move reaction1 reaction2 ...

List of reactions that should be used in the lattice region of space. These reactions need
to have been fully defined previously in the particle region of space. Rather than listing all
reactions, the keyword “all” can be used to state that all of the current particle-side reactions
should also be functional on the lattice side. If the keyword “move” is given in the list, as

143

18. Statements

in the latter form above, then all subsequent listed reactions are “moved” to the lattice side,
meaning that they are functional on the lattice side but become non-functional on the particle
side. In this case, they are still defined on the particle side, but are simply disabled.

* mol nmol name pos0 pos1 ... posdim−1

This adds molecules to the starting state of the simulation in the lattice region of space. This
statement is essentially identical to the statement with the same name that is in the particle
portion of the configuration file. The lattice regions starts with nmol type name molecules
at location pos. Each of the dim elements of the position may be a number to give the
actual position of the molecule or molecules; or the letter “u” to indicate that the position for
each molecule should be a random value between the bounding walls, chosen from a uniform
density; or a position range which is given as two numbers separated with a hyphen.

* end lattice

End of a block of lattice definitions. Lattice statements are no longer recognized but other
simulation statements are.

18.14. Statements for simulation settings

random seed seed

Seed for random number generator, which can be any integer. If this line is not entered (or
if you set the seed value to “time”), the current time is used as a seed, producing different
sequences for each run. (This statement was called rand seed through version 2.28.)

accuracy float

A parameter that determines the quantitative accuracy of the simulation, on a scale from 0 to
10. Low values are less accurate but run faster. Default value is 10, for maximum accuracy.
Bimolecular reactions are only checked for pairs of reactants that are both within the same
virtual box when accuracy is 0 to 2.99, reactants in nearest neighboring boxes are considered
as well when accuracy is 3 to 6.99, and reactants in all types of neighboring boxes are checked
when accuracy is 7 to 10.

molperbox float

Virtual boxes are set up initially so the average number of molecules per box is no more
than this value. The default value is 5. boxsize is an alternate way of entering comparable
information.

boxsize float

Rather than using molperbox to specify the sizes of the virtual boxes, boxsize can be used
to request the width of the boxes. The actual box volumes will be no larger than the volume
calculated from the width given here.

gauss table size int

This sets the size of a lookup table that is used to generate Gaussian-distributed random
numbers. It needs to be an integer power of 2. The default value is 4096, which should be
appropriate for nearly all applications.

144

18.14. Statements for simulation settings

epsilon float

Maximum allowed distance separation between a surface-bound molecule and the surface.
The default value, which is extremely small, is good for most applications.

margin float

The distance inside of a panel edge to which Smoldyn moves surface-bound molecules that
diffuse off of a panel. The default value, which is extremely small, is good for most
applications.

neighbor dist float

Maximum distance that surface-bound molecules will jump across space to diffuse from one
panel to a neighboring panel. In Smoldyn 2.37 and higher versions, the default for this value
is extremely small, just large enough to prevent round-off error. It should not need to be
changed. In prior versions, the default value was 3 times the maximum rms step length
of surface-bound molecules, which was necessary due to a different surface-bound molecule
diffusion algorithm.

145

19. Runtime commands

19.1. Simulation control commands

stop

Stop the simulation.

pause

This puts the simulation in pause mode. If opengl graphics are used, continuation occurs
when the user presses the spacebar. When graphics are not used, the user is told to press
enter.

beep

The computer beeps when this is reached. Nothing else is done.

keypress char

Send a signal to the graphics manipulation component of the program to execute the behavior
that would occur when a key is pressed. For the arrows, and shift-arrows, the character should
be “r” for right, “l” for left, “u” for up, “d” for down, and the respective upper case characters
for the shift-arrows.

setflag number

Sets the global command flag value to number, which can be a floating point value. This
is generally used after a conditional command, and is then queried by one or more ifflag

commands.

setrandseed seed

Sets the random number seed to the specified integer value. If the seed listed is less than 0,
the current time is used for the seed.

setgraphics type

Sets the display graphics to type type. If graphics were not set up initially, using the
graphics statement, this command does nothing. Otherwise, options for type are “opengl” or
“opengl good”.

setgraphic iter timesteps

Sets the graphics update interval to timesteps time steps. This is only functional if graphics
were set up initially, using the graphics statement.

updategraphics

Update the graphics window.

147

19. Runtime commands

19.2. File manipulation commands

overwrite filename

Erases the output file called filename but leaves it open for more writing.

incrementfile filename

A new output file is created based upon the filename. The first time this is called the filename
is appended with a “ 001”, which is then incremented with subsequent calls to “ 002”, and
so on. These numbers precede any suffix on the filename.

19.3. Conditional commands

if value1 symbol value2 command

Runs command command, depending on the relative values of value1 and value2. The symbol
character can be “<”, “>” or “=”.

ifflag symbol number command

Run command command, depending on the value of the global command flag. Enter symbol
as “<” if command should be run if the flag value is less than number, as “>” for the flag
value greater than number, and as “=” for the flag value equal to number.

ifprob value command

Run command command with probability value, which should be between 0 and 1. If you
want to run multiple commands with this probability use the setflag and ifflag commands.

ifno species(state) command

Run command command if no molecule of type species remains. The molecule state state is
optional, with “solution” as a default. The name and/or the state may be “all”.

ifless species(state) num command

Run command command if there are fewer than num molecules of type species remaining.
The molecule state state is optional, with “solution” as a default. The name and/or the state
may be “all”.

ifmore species(state) num command

Run command command if there are more than num molecules of type species. The molecule
state state is optional, with “solution” as a default. The name and/or the state may be “all”.

ifincmpt species(state) char number compartment command

Run command command depending on how the number of molecules of type species within
compartment compartment compares with number. Enter char as “<” if command should
be run with less than number molecules, as “>” for more than number, or as “=” for equal
to number. A space is required between this symbol and number. The molecules’ state state
is optional, with “solution” as a default. The species and/or state may be “all”.

148

19.4. System observation commands

ifchange species(state) char num command

Run command command if the number of molecules of type species changes (or doesn’t
change) relative to the previous time this command was called. The molecule state state is
optional, with “solution” as a default. The name and/or the state may be “all”. Enter char
as “>” to respond to a difference that is greater than num, “<” to respond to a difference
that is less than num, “=” to respond to a difference that is exactly equal to num, or “!”
to respond to a difference that does not equal num. For example, enter char and numas “!
0” to respond to any change in molecule numbers, or as “< −10” to respond to any decrease
that exceeds 10 molecules.

19.4. System observation commands

For all of the observation commands, if filename is the last parameter, then it may be omitted
and results will be output to “stdout”.

warnescapee species(state) filename

Looks for molecules of type species that are outside the system boundaries, printing results
to filename. If there are none, nothing is printed. For each molecule that escaped during
the last time step, this prints a line of text that says where the molecule was, where it is,
and where it crossed the last surface. Setting species to “all” allows all molecule types to be
checked. This needs to be run at every time step to catch all escaping molecules.

warnescapeecmpt species(state) compartment filename

This is the same as warnescapee, but looks for molecules escaping from compartment.

echo filename”string”

Just prints the text within double quotes to the file, without any terminal newline. If you
want a newline, include “
n” at the end of the string. The quotes need to be plain quotes, not curly quotes.

evaluate filename expression

Evaluates the given mathematical expression, printing the result to the file. The results are
only likely to be interesting if the expression is one of the Smoldyn functions.

molcountheader filename

This prints one line of display with the word “time” and then the name of each molecule
species. This is intended to be used as a header line for the molcount, molcountinbox, etc.
commands.

molcount filename

Each time this command is executed, one line of display is printed to the listed file, giving the
time and the number of molecules for each molecular species. Molecule states are ignored.
The ordering used is the same as was given in the species command. This command accounts
for molecules in lattices and their associated ports.

molcountinbox lowx highx filename
molcountinbox lowx highx lowy highy filename
molcountinbox lowx highx lowy highy lowz highz filename

149

19. Runtime commands

Each time this command is executed, one line of display is printed to the listed file, giving
the time and the number of molecules that are within the box that is defined by the low and
high parameter, for each molecular species. Molecule states are ignored. The ordering used
is the same as was given in the species statement.

molcountincmpt compartment filename

Each time this command is executed, one line of display is printed to the listed file, giving the
time and the number of molecules that are within the compartment compartment for each
molecular species. Only solution-phase molecules are listed. The ordering used is the same
as was given in the species statement.

molcountincmpts compartment1 compartment1 ... compartmentn filename

Each time this command is executed, one line of display is printed to the listed file, giving the
time and the number of molecules that are within each of the compartments listed, for each
molecular species. Up to 16 compartments may be listed. Only solution-phase molecules are
reported to the output. The molecule ordering used is the same as was given in the species
statement.

molcountincmpt2 compartment state filename

Identical to molcountincmpt except that this counts molecules that are in state state.
Entering state as “all” means that molecules of all states are counted. Note that the surfaces
that bound a compartment are included in that compartment.

molcountonsurf surface filename

Each time this command is executed, one line of display is printed to the listed file, giving the
time and the number of molecules that are bound to the surface surface for each molecular
species. The molecule state is not printed. The ordering used is the same as was given in the
species statement.

molcountspace species(state) axis low high bins average filename
molcountspace species(state) axis low high bins low high average filename
molcountspace species(state) axis low high bins low high low high average filename

This command measures a line profile of molecules. It only counts molecules of type species,
with an optional state specification, although species and/or state can be “all”. The line
profile is along axis number axis, which is “x”, “y”, or “z” (or a number between 0 and
the system dimensionality minus 1), extends from low to high, and is composed of bins
equally spaced bins (i.e. it’s a histogram). These bins extend exactly from low to high, and
thus do not count any molecules that are outside this range. For two dimensions, the line
width and lateral position are specified with another pair of low and high values; for three
dimensions, two more pairs of low and high values are required, which now specify the sides
of a rectangular cross-section tube.

To illustrate the sequence of parameters, suppose the command is used in a 3-D system to
show concentration variation along the y-axis. In this case, axis is “y”, the first low and
high indicate the ends of the measurement range along the y-axis, the next low and high
indicate the domain on the x-direction, and the third low and high indicate the domain on the
z-direction. Set the average input to 0 to not use averaging, in which case there is output at
every command execution. Otherwise, this only produces an output every average iterations,
at which point it outputs means that were collected over the preceding iterations. At each

150

19.4. System observation commands

output time, the command outputs a single line of text to filename with the time followed
by the numbers (or average numbers) of the specified molecules in each histogram bin. This
command accounts for molecules in lattices, but not for molecules in ports.

molcountspace2d species(state) z lowx highx binsx lowy highy binsy average filename
molcountspace2d

species(state) axis low high bins low high bins low high average filename

This command measures a 2D histogram of molecules. It is identical to molcountspace,
but for 2D. The area is perpendicular to the listed axis (must be entered as “z” for 2D
simulations and selectable for 3D simulations). It extends from low to high, and is composed
of bins equally spaced bins, entered separately for each of the two axes. For 3D simulations,
region thickness is specified with another pair of low and high values. Set the average input to
0 to not use averaging, in which case there is output at every command execution. Otherwise,
this only produces an output every average iterations, at which point it outputs means that
were collected over the preceding iterations. At each output time, the command outputs the
time to filename, followed by a grid of numbers of the molecules in each histogram bin. This
command does not account for molecules in lattices or ports.

molcountspaceradial species(state) centerx radius bins average filename
molcountspaceradial species(state) centerx centery radius bins average filename
molcountspaceradial species(state) centerx centery centerz radius bins average filename

This command measures a radial profile of molecules. It is identical to molcountspace, except
that counts molecules in radial rings, rather than along a line profile. It only counts molecules
of type species, with an optional state specification, although species and/or state can be
“all”. Enter the center position in center, with the number of entries equal to the system
dimensionality, and the investigated radius in radius. The histogram is comprised of bins
equally spaced bins. The volume investigated includes all edges. Set the average input to 0
to not use averaging, in which case there is output at every command execution. Otherwise,
this only produces an output every average iterations, at which point it outputs means that
were collected over the preceding iterations. At each output time, the command outputs a
single line of text to filename with the time followed by the numbers (or average numbers) of
the specified molecules in each histogram bin. This command does not account for molecules
in lattices or ports.

molcountspacepolarangle

species(state) centerx centery polex poley radiusmin radiusmax bins average filename
molcountspacepolarangle

species(state) centerx centery centerz polex poley polez radiusmin radiusmax bins average filename

This command measures a polar angle profile of molecules. It is identical to molcountspace

(and molcountspaceradial), except that counts molecules in angular segments, rather
than along a line profile. It only counts molecules of type species, with an optional state
specification, although species and/or state can be “all”. Enter the center position in center,
with the number of entries equal to the system dimensionality. Enter the vector that points
towards the pole in pole, again with the number of entries equal to the system dimensionality.
All molecules between radiusmin and radiusmax will be included; set either or both to -1 to
remove the respective constraint. The histogram is composed of bins equally spaced bins.
These bins extend from 0 to 2π for a 2D system and from 0 to π in a 3D system. The volume
investigated includes all edges. Set the average input to 0 to not use averaging, in which case

151

19. Runtime commands

there is output at every command execution. Otherwise, this only produces an output every
average iterations, at which point it outputs means that were collected over the preceding
iterations. At each output time, the command outputs a single line of text to filename with
the time followed by the numbers (or average numbers) of the specified molecules in each
histogram bin. This command does not account for molecules in lattices or ports.

radialdistribution species1(state) species2(state) radius bins average filename

Computes the radial distribution function for molecules of species2 about those of species1.
These are allowed to be the same species, can include wildcards, can be “all”, etc. Enter the
maximum radius to be considered in radius, the number of bins in the histogram in bins, the
number of iterations to be averaged together in average (or 0 for no averaging), and the output
filename in filename. Outputs the time followed by the radial distribution function, where
the radial distribution function values are the average molecule densities (units of inverse
volume) in each radial bin. Divide these results by the overall average molecule density to get
the conventional radial distribution function, which typically approaches 1 for large distances.
This function accounts for periodic boundaries if they are used.

radialdistribution2

species1(state) species2(state) lowx highx lowy highy lowz highz radius bins average filename

Identical to radialdistribution except that this also allows selection of a volume region.
Enter the low and high values for as many dimensions as the simulation uses. This computes
the radial distribution about all molecules of species1 that are within the given volume;
species2 molecules are considered that are outside of this volume (up to distance radius
outside of it).

molcountspecies species(state) filename

Prints out a single line of text to filename with time and the number of molecules of the
listed species that are in state state. Either or both of species and state may be “all”. If
state is not included, solution is assumed.

molcountspecieslist filename species(state) species(state) ... species(state)

Prints out a single line of text to filename with time and the number of molecules of each
of the listed species and states. Either or both of species and state may be “all”. If state is
not included, solution is assumed.

mollistsize listname filename

Prints out a single line of text to filename with the total number of molecules in the molecule
list named listname. This is allowed to be “all”.

listmols filename

This prints out the identity, state, location, and serial number of every molecule in the system
to the listed file name, using a separate line of text for each molecule.

listmols2 filename

This is very similar to listmols but has a slightly different output format. Each line of text
is preceded by the “time counter”, which is an integer that starts at 1 and is incremented each
time the routine is called. Also, the species and state names of molecules are not printed, but
instead the species and state numbers are printed.

152

19.4. System observation commands

listmols3 species(state) filename

This is identical to listmols2 except that it only prints information about molecules of type
species. state is optional; species and/or state can be “all”.

listmols4 species(state) filename

This is identical to listmols3 except that it accounts for wrap-arounds when displaying
molecule positions. In other words, if the x-axis ranges from 0 to 10, a molecule starts in
the middle at x = 5 and diffuses to the right for a full lap, returning to the middle of the
system, then its x value is printed here as 15, rather than as 5 as it is for listmols3. state
is optional; species and/or state can be “all”.

listmolscmpt species(state) cmpt filename

This prints out the time counter (see listmols2), species, state, and location, and serial
number of every molecule that is within compartment cmpt. It only prints information about
molecules of type species. state is optional; species and/or state can be “all”.

listmolssurf species(state) surface filename

This prints out the time counter (see listmols2), and then the species number, state number,
location, surface name bound to, colon, panel name bound to, and serial number of every
molecule that is bound to surface surface, with one line per molecule. It only prints
information about molecules of type species. state is optional. species and/or state and/or
surface can be “all”.

molpos species(state) filename

This prints out the time and then the positions of all molecules of type species on a single
line of text, to the listed filename. state is optional; species and/or state can be “all”.

trackmol serno filename

Outputs the time and the species, state, serial number, location, and inside vs. outside
compartment status for each compartment of the single molecule with serial number serno.
This stops after it finds the first molecule with the requested serial number. This supports
two-part serial numbers (see reaction serialnum) in which a match occurs if serno exactly
matches either the whole molecule serial number or either half of it.

molmoments species(state) filename

This prints out the time and then the positional moments of the molecule type given to the
listed file name. All the moments are printed on a single line of text; they are the number
of molecules, the mean position vector (dim values), and the variances on each axis and
combination of axes (dim2 values). state is optional; neither species nor state can be “all”.

savesim filename

This writes the complete state of the current system to the listed file name, in a format that
can be loaded in later as a configuration file. Note that minor file editing is often desirable
before simulating a file saved in this manner. In particular, the saved file will declare its own
name as an output file name, which will erase the configuration file.

meansqrdisp species(state) dim filename

153

19. Runtime commands

This function is used to measure mean square displacements (diffusion rates) of molecules of
type species, along dimension dim (“x”, “y”, or “z”, or 0, 1, or 2) printing the results to
filename. When it is first invoked, it records the positions of all molecules of type species.
Then, and every subsequent time it is called, it compares the current positions of all molecules
that still exist to the old ones, calculates the average squared displacement (〈r2〉), and prints
the time and that number to a single line in the output file. If dim is “all”, this sums the mean
square displacement for all dimensions, otherwise dim should be a dimension number. This
accounts for periodic boundaries. state is optional; neither species nor state can be “all”.
This prints out three numbers in each line: time, 〈r2〉, and 〈r4〉. This command does not
work if multiple molecules have the same serial number (which can only happen if you use the
reaction serialnum statement). For molecules with two-part serial numbers, it determines
molecule identity based on only the right part.

To interpret these results, diffusion typically leads to a Gaussian concentration profile. In
this case, 〈r2〉 = 2Dt and 〈r4〉 = 12D2t2 in 1 dimension; 〈r2〉 = 4Dt and 〈r4〉 = 32D2t2 in
2 dimensions; and 〈r2〉 = 6Dt and 〈r4〉 = 60D2t2 in 3 dimensions, where D is the effective
diffusion coefficient and t is the time. Most researchers only use the 〈r2〉 value but the 〈r4〉
value is also useful for checking whether the concentration profile is actually Gaussian or not.

meansqrdisp2 species(state) dim start report max mol max moment filename

This function is an expanded version of meansqrdisp. As above, it measures mean square
displacements of molecules of type species, along dimension dim (“x”, “y”, or “z”, or 0, 1,
or 2), and prints the results to filename. The start and report arguments control when this
command starts tracking molecules and when it reports their mean square displacements,
respectively. For start, enter “i” to track molecules that exist when the command is initially
invoked, enter “c” to track those that are created after the first call, and enter “a” (all) to track
both sets of molecules. For report, enter “e” to report on every molecule that is being tracked,
or “r” to report on only those that reacted since the command was last called. In this latter
case, the position that is used for a reacted molecule is its most recently tracked position, since
it no longer exists. For example, if you want to see how far molecules diffuse between their
creation in one reaction and their destruction in another reaction, set start to “c” and report
to “r”. Or, set start to “i” and report to “e” for this function to be identical to meansqrdisp.
It can track up to max mol molecules. This function prints out the time and then results
for all moments, even and odd, from 〈r0〉 (the number of molecules being reported on) to
〈rmax moment〉. This command accounts for periodic boundaries. state is optional; neither
species nor state can be “all”. This command does not work if multiple molecules have the
same serial number (which can only happen if you use the reaction serialnum statement).
For molecules with two-part serial numbers, it determines molecule identity based on only
the right part.

meansqrdisp3 species(state) dim start report max mol change filename command

This function is quite similar to meansqrdisp and meansqrdisp2. It measures mean square
displacements of molecules of type species, along dimension dim (“x”, “y”, or “z”, or 0, 1,
or 2). Then, this function divides these values by the molecules’ ages to compute effective
diffusion coefficients and prints the results to filename. The effective diffusion coefficient
average is weighted using the molecule ages, so that old molecules have proportionately greater
weight in the average than young molecules. The start and report arguments control when
this command starts tracking molecules and when it reports their mean square displacements,
respectively. For start, enter “i” to track molecules that exist when the command is initially

154

19.4. System observation commands

invoked, enter “c” to track those that are created after the first call, and enter “a” (all) to
track both sets of molecules. For report, enter “e” to report on every molecule that is being
tracked, or “r” to report on only those that reacted since the command was last called. In
this latter case, the position that is used for a reacted molecule is its most recently tracked
position, since it no longer exists. It can track up to max mol molecules. This function prints
out the time, the number of molecules reported on, and the effective diffusion coefficient. Note
that the first command run will always output an effective diffusion coefficient of “NaN” (or
#1.IND on Windows systems) due to a 0/0 division error arising from 0 displacement divided
by 0 time difference. If the effective diffusion coefficient changed less than change since the
last time this function was executed, then the command command is run (e.g. if change is
0.01 then a fractional diffusion coefficient change of 1% or less will cause command to be
run). See the example file called meansqrdisp3.txt. This command accounts for periodic
boundaries. The species cannot be “all”. The state is optional. If the state is “all”, then
molecules for all states of this species must be stored in the same molecule list. No warning
is issued if this is not the case, but some molecules simply won’t be counted. This command
does not work if multiple molecules have the same serial number (which can only happen if
you use the reaction serialnum statement). For molecules with two-part serial numbers, it
determines molecule identity based on only the right part.

residencetime species(state) start report summary out list out max mol filename

This function computes residence times of individual molecules of type species, thus showing
how long they have existed in the system. As with meansqrdisp2 and meansqrdisp3, the
start and report arguments control when this command starts tracking molecules and when
it reports their residence times, respectively. For start, enter “i” to track molecules that exist
when the command is initially invoked, enter “c” to track those that are created after the
first call, and enter “a” (all) to track both sets of molecules. For report, enter “e” to report
on every molecule that is being tracked, or “r” to report on only those that reacted since
the command was last called. It can track up to max mol molecules. This function needs to
be invoked at every time step so that molecules can be tracked accurately. However, output
may not be wanted at every time step, so set summary out to the number of invocations
between when this should print a summary output, with the time number of molecules, and
mean residence time, and set list out to the number of invocations between when this should
print a list output, with a list of all molecules with their IDs and their current ages. In both
cases, set values to 0 or less to not have this type of output. state is optional; neither species
nor state can be “all”. See the residencetime.txt example file. This command does not work
if multiple molecules have the same serial number (which can only happen if you use the
reaction serialnum statement).

diagnostics type

Displays diagnostics about various parts of the data structures to the screen. These are
identical to those that are displayed at program initialization, but for later times. The
options for the type word are: “simulation”, “wall”, “molecule”, “surface”, “command”,
“box”, “reaction”, “compartment”, “port”, “check”, and “all”.

executiontime filename

Prints a single line of text with the current simulation time and the number of seconds of real
time that the simulation has taken to execute since the simulation was started.

155

19. Runtime commands

printLattice filename

Displays diagnostics about all lattices.

writeVTK filepath/filename

Outputs VTK format data for viewing with applications such as Visit or Paraview. This
creates a stack of files in the working directory, or somewhere else depending on the filepath,
for which the names start with filenameLattice00 00001.vtu and filenameMolecules00001.vtu,
where filename is the entered file name. The filepath directory needs to have been created
beforehand. In contrast to most filenames, this path and name should not be declared with
the “output files” statement. The filename numbers are incremented for each snapshot. If
molecules have two-part serial numbers, this only considers the right part.

printdata data filename [erase]

Prints data that were recorded by some other command, and stored in data array data, to
the output filename. Set the optional parameter erase to 0 to not have the original data
erased after copying (the default) or to 1 to have the original data erased after copying.

19.5. System manipulation commands

set statement

This command lets you use essentially any statement that can be entered in a configuration
file. The statement can, for example, create new reactions, add surfaces, change rate
constants, etc.

pointsource species num posx
pointsource species num posx posy
pointsource species num posx posy posz

Creates num new molecules of type species and at location pos. Molecule states are set to
solution. This creates exactly num molecules if num is an integer and a Poisson-distributed
random number of molecules with expected value equal to num if num is a non-integer.

volumesource species num posx,low posx,high posy,low posy,high posz,low posz,high
volumesource species num posx,low posx,high posy,low posy,high posz,low posz,high
volumesource species num posx,low posx,high posy,low posy,high posz,low posz,high

Creates num new molecules of type species and within the location bounded by poslow and
poshigh. Molecule states are set to solution. This creates exactly num molecules if num is an
integer and a Poisson-distributed random number of molecules with expected value equal to
num if num is a non-integer.

gaussiansource species num meanxsigmax
gaussiansource species num meanxsigmaxmeanysigmay
gaussiansource species num meanxsigmaxmeanysigmaymeanzsigmaz

Creates num new molecules of type species with a Gaussian distribution centered at mean
and with standard deviation sigma on each axis. Molecules are not placed beyond the system
boundaries; any attempted placements are rejected and sampled again. Molecule states are set
to solution. This creates exactly num molecules if num is an integer and a Poisson-distributed
random number of molecules with expected value equal to num if num is a non-integer.

156

19.5. System manipulation commands

movesurfacemol species(state) prob surface1 : panel1 surface2 : panel2 [state2]

Moves molecules of type species and state state, and which are bound to panel1 of surface1,
to panel2 of surface2 with probability prob. If entered, the new molecular state becomes
state2, which may be any state including fsoln or bsoln; otherwise the molecule state is
unchanged. The new molecule location is at a random location on panel2 (which contrasts
the behavior of the jump statement). Either or both of panel1 and panel2 can be “all” for all
panels of the respective surface. Also, the species and/or the state may be “all”.

killmol species(state)

Kills all molecules of type species. state is optional; species and/or state may be “all”.

killmolprob species(state) prob

Kills some molecules of type species; the probability of a molecule being killed is prob (between
0 and 1). state is optional; species and/or state may be “all”. prob can be a function of the
molecule location using its x, y, and z values.

killmolinsphere species(state) surface

Kill all molecules of type species that are in any sphere that is a panel of surface surface.
If surface is “all” then every surface is scanned. state is optional; species and/or state may
be “all”.

killmolincmpt species(state) compartment

Kill all molecules of type species that are in compartment compartment. state is optional;
species and/or state may be “all”.

killmoloutsidesystem species(state)

Kill all molecules of type species that are outside of the system boundaries. state is optional;
species and/or state may be “all”.

fixmolcount species num

Counts the number of solution-phase molecules of type species. If this count is more than
num, then molecules of this type, chosen at random, are removed until num is reached.
Otherwise, molecules are added to random positions in the system to achieve a total count
of num. This function considers the entire system volume.

fixmolcountrange species low num high num

Exactly like fixmolcount, except that the molecule count is unchanged if it is between
low num and high num, and is otherwise modified to bring it to within the range.

fixmolcountonsurf species(state) num surface

Counts the number of surface-bound molecules of type species and state state. If this count
is more than num, then molecules of this type, chosen at random, are removed until num is
reached. Otherwise, molecules with the proper state are added to random positions on the
surface to achieve a total count of num.

fixmolcountrangeonsurf species(state) low num high num surface

Exactly like fixmolcountonsurf, except that the molecule count is unchanged if it is between
low num and high num, and is otherwise modified to bring it to within the range.

157

19. Runtime commands

fixmolcountincmpt species num compartment

Counts the number of solution-phase molecules of type species and in compartment
compartment. If this count is more than num, then molecules of this type, chosen at random,
are removed until num is reached. Otherwise, molecules are added to random positions in
the compartment to achieve a total count of num.

fixmolcountrangeincmpt species low num high num compartment

Exactly like fixmolcountincmpt, except that the molecule count is unchanged if it is between
low num and high num, and is otherwise modified to bring it to within the range.

equilmol species1(state1) species2(state2) prob

Equilibrate these molecules. All molecules of type species1 and species2 will be randomly
replaced with one of the two types, where type species2 has probability prob. state1 and
state2 are optional; defaults are “solution”. Neither species nor states may be “all”. prob can
be a function of the molecule location using its x, y, and z values.

replacemol species1(state1) species2(state2) prob

Molecules of type species1 are replaced with ones of type species2 with probability prob.
States are optional and are solution by default; neither species nor states may be “all”. prob
can be a function of the molecule location using its x, y, and z values.

replacexyzmol species(state) pos0 pos1 ... posdim−1

If there is a non-diffusing molecule at exactly position pos, it is replaced with one of type
species. This command stops after one molecule is found. state is optional and may not be
“all”; default is solution.

replacevolmol

species1(state1) species2(state2) frac pos0,low pos0,high pos1,low pos1,high ... posdim−1,high

Fraction fracmolecules of type species1 in the volume bounded by poslow, poshigh are replaced
with ones of type species2. States are optional and are solution by default; neither species
nor states may be “all”. frac can be a function of the molecule location using its x, y, and
z values.

replacecmptmol species1(state1) species2(state2) frac compartment

Fraction frac molecules of type species1 in the compartment named compartment are
replaced with ones of type species2. States are optional and are solution by default; neither
species nor states may be “all”. frac can be a function of the molecule location using its x,
y, and z values.

modulatemol species1(state1) species2(state2) freq shift

Modulates molecules of types species1 and species2, just like equilmol, but with a variable
probability. Every time this command executes, any of the two types of molecules in the
system are replaced with a molecule of type species1 with probability cos(freq ∗ t + shift),
where t is the simulation time, and otherwise with a molecule of type species2. States are
optional and are solution by default; neither species nor states may be “all”.

react1 species(state) rxn

158

19.5. System manipulation commands

All molecules of type species are instantly reacted, resulting in the products and product
placements given by the unimolecular reaction named rxn. Note that species does not have
to be the normal reactant for reaction rxn. The state is optional; species and/or state may
be “all”.

setrateint rxn rate

Sets the internal reaction rate of the reaction named rxn to rate. See the description above
for rate internal for the meanings of rate for the different reaction orders.

shufflemollist listname

Randomly shuffles the sequence of molecules in the molecule list called listname. Enter “all”
for all lists. This is useful for systems that are especially ordered or for simulations with
unusually long time steps, because these situations may make simulation results depend on
the molecule list sequences.

shufflereactions reactant1 reactant2

Randomly shuffles the sequence of bimolecular reactions that reactant species reactant1 and
reactant2 can undergo (all states are indexed together). Either or both or reactant1 and
reactant2 can be “all”.

settimestep dt

Changes the simulation time step to dt. This changes the diffusion step lengths, reaction
binding and unbinding radii, and surface action probabilities. Caution should be used if the
time step is increased to longer than the original value because no checks are made to ensure
that the simulation will still yield accurate results.

porttransport port1 port2

Transports molecules from the output buffer of port1 to the input of port2. These may be
the same ports.

excludebox lowx highx
excludebox lowx highx lowy highy
excludebox lowx highx lowy highy lowz highz

This keeps all molecules from entering a rectanguloid box within the system volume. Use
the first form for one dimension, the second for two dimensions, and the third for three
dimensions. Molecules that start within the box can stay there, but any molecule that tries
to diffuse into the box is returned to its location at the previous time step. This command
needs to be run at every time step to work properly.

excludesphere x rad
excludesphere x y rad
excludesphere x y z rad

This keeps all molecules from entering a sphere within the system volume. Use the first form
for one dimension, the second for two dimensions, and the third for three dimensions; the
coordinates given are the sphere center and rad is the sphere radius. Molecules that start
within the sphere can stay there, but any molecule that tries to diffuse into the sphere is
returned to its location at the previous time step. This command needs to be run at every
time step to work properly.

159

19. Runtime commands

includeecoli

An E. coli shape is defined as a cylinder with hemispherical endcaps, where the long axis of
the bacterium extends the length of the x-axis within the system walls and the radius of both
the cylinder and the endcaps is half the spacing between the walls that bound the y-axis.
This command moves any molecule that diffuses out of the E. coli shape back to its location
at the previous time step, or to the nearest surface of the E. coli if it was outside at the
previous time step as well. This command does not need to be run at every time step to work
properly. This only works with a 3 dimensional system.

setreactionratemolcount rxn c0 c1 species1(state1) c2 species2(state2) ...

This sets the rate of the reaction named rxn to: c0, plus c1 times the number of molecules of
species1 and state1, plus c2 times the number of molecules of species2 and state2, plus any
additional coefficients and species that are listed here. Species and/or states may be “all”
and wildcards are permitted. If the reaction rate is computed to be a negative value, it is set
to zero instead (and no warning is issued).

expandsystem expandxexpandyexpandz

Expand, or contract, everything in system, which includes molecule locations and surfaces,
about the center of the system. Expands by expandx along the x-coordinate, by expandy along
the y-coordinate, and by expandz along the z-coordinate. Enter as many numbers as there
are dimensions. Each number should be 1 for no change, a number larger than 1 for expansion
and a number smaller than 1 for contraction. Negative numbers perform system inversion.
This command can be used, for example, to mimic lengthwise or diameter growth of a cell.
Warning: isotropic expansion or contraction, in which all three expansion values are equal,
generally works well, with no unintentional transfer of molecules across surfaces. However,
anisotropic expansion or contraction would normally cause some of Smoldyn’s panel shapes
to become distorted, including spheres, hemispheres, cylinders, and disks. Smoldyn does not
support this, so these panels are expanded but not distorted. In the process, molecules often
cross the surfaces unintentionally and need to be dealt with separately (e.g. killed off). See
the expandsystem.txt example file.

translatecmpt compartment code ∆x
translatecmpt compartment code ∆x ∆y
translatecmpt compartment code ∆x ∆y ∆z

Translate the compartment called compartment by the shift value given in ∆x, ∆y, and ∆z
(with fewer values for lower dimensions). The code value describes which attributes of the
compartment should be moved; add the codes for the individual attributes for the final code
value. The individual codes are: 1 for translating the compartment surfaces, 2 for translating
the molecules that are bound to those surfaces, 4 for translating the molecules that are within
the compartment, and 8 for shifting the molecules that are outside of the compartment but
that get bumped into by the moving surfaces. Thus, use a code of 15 to get all of these
behaviors at once. With code of 4, all molecules within the compartment are translated,
regardless of their surface actions. With code of 8, all molecules that a compartment surface
would bump into get translated, unless their surface action is “transmit”. If a molecule
gets “squeezed”, meaning that it gets bumped into by the moving compartment, but then
gets bumped back due to some other surface, then that molecule will end up inside of the
compartment.

160

19.5. System manipulation commands

diffusecmpt compartment code stddevx [cmpt bound radius nsample]
diffusecmpt compartment code stddevx stddevy [cmpt bound radius nsample]
diffusecmpt compartment code stddevx stddevy stddevz [cmpt bound radius nsample]

This is similar to translatecmpt, except that this translates the compartment by a Gaussian
distributed random amount that has standard deviation on each axis of stddevx, stddevy, and
stddevz. Also, this has three optional parameters: cmpt bound, radius, and nsample. If they
are entered, then Smoldyn keeps the diffusing compartment within the bounding compartment
called cmpt bound (assuming it was inside initially). It does this by computing nsample
test points that are on a spherical shell of radius radius around each of the compartment’s
interior-defining points and determines if any of these test points would escape the bounding
compartment during a move. If so, then the move is rejected, and Smoldyn tries again,
up to 10 times. It’s important that radius is slightly larger than the actual distance to
the compartment edge and that nsample is sufficiently large to cover the effective surface
adequately because molecule behavior is unpredictable if a molecule is between two reflective
surfaces that end up crossing each other, even if only briefly and by a small amount.

longrangeforce species1(state) species2(state) mobility1 mobility2 radmin radmax equation

This simulates a long range force between molecules of species1 and species2, moving them
in response to it. The force is computed from equation. This equation needs to be a function
of r, which is the radius. For example, it could be -4*r^(-2)+2*r^(-4), where r represents
the distance between two molecules; do not include any spaces in the equation. Negative
values represent attractive forces, and note that exponents will probably be negative for most
physically reasonable forces. This equation applies for all separations between radmin and
radmax, and the force is zero elsewhere. For computational efficiency, it’s a good idea to keep
radmax reasonably small. Molecules of species1 move distance mobility1∆t times the force,
while those of species2 move mobility2∆t times the force, where ∆t is the simulation time
step. Except in very unusual circumstances, both mobilities should be positive values. Note
that this accounts for the simulation time step, which is unusual for commands. However, it
does not account for the command being run at wide intervals, such as every 2, 3, or 4 time
steps. Instead, to be quantitatively accurate, it needs to run at every time step (or run it
every n time steps, and multiply the force or mobility by n).

translatemol species(state) equationx
translatemol species(state) equationx equationy
translatemol species(state) equationx equationy equationz

Translates molecules of the given species and state (each of which are allowed to be “all”) by
the displacement that is calculated from the equations, with one equation for each coordinate.
These equations are allowed to be functions of the position and/or the time; the position is
entered as x, y, and/or z, and the time as time. Do not include spaces in the equations and
simply enter “0” for an equation if there’s no translation on that axis. For example, in a 3D
system, the three equations y -x 0 cause the molecules to circle the origin in the x− y plane
and stay stationary along the z axis.

161

20. C/C++ and Python APIs

The C and C++ APIs are the same. There are two Python APIs. Import the “high-level”
or “user” API with import smoldyn. Import the “low-level” or “developer” API with import

smoldyn. smoldyn. This documentation section is comprehensive for the C/C++ API but not for
the Python API. For that, use this as a guide, but also look at example files, use help(), dir(), etc.
as needed, and try the readthedocs webpage. Also, note that many functions can be accessed in
multiple different ways; for example, you can run a simulation with sim.run() or sim.runSim() or
smoldyn.Simulation.runSim(sim). For the most part, this documentation only shows the single
recommended approach because that leads to more readable code.

20.1. Enumerations

In C, enumerations are defined in the smoldyn.h header file, so they can be used once that it
included. Here is an example of using an enumerated error code as an argument,

#include <libsmoldyn.h>

smolErrorCodeToString(ECwarning , mystring)

In Python, enumerations are only directly accessible in the low-level API. Here, they are most
easily dealt with by defining a variable for the enumerated list and then choosing from it. Here are
two examples,

import smoldyn

import smoldyn._smoldyn as smol

EC=smol.ErrorCode

smol.errorCodeToString(EC.warning)

s=smoldyn.Simulation(low=[0,0],high =[10 ,10])

specA=s.addSpecies("A")

setSpeciesMobility(species="A", state=smol.MolecState.soln , diffConst =10)

For the user API, enter strings for the different enumeration possibilities.

List of enumerations

Surface actions (SrfAction)

Statement Libsmoldyn Python Notes

reflect SAreflect reflect
transmit SAtrans trans
absorb SAabsorb absorb
jump SAjump jump
port SAport port
multiple SAmult mult multiple actions
N/A SAno no static surface-bound molecules
N/A SAnone none none of the other options
N/A SAadsorb adsorb internal use only

163

20. C/C++ and Python APIs

N/A SArevdes revdes internal use only
N/A SAirrevdes irrevdes internal use only
N/A SAflip flip internal use only

Molecule state (MolecState)

Statement Libsmoldyn Python Notes

soln MSsoln soln
front MSfront front
back MSback back
up MSup up
down MSdown down
bsoln MSbsoln bsoln pseudo-state for surface interactions
all MSall all for model creation by user
N/A MSnone none internal use only

Panel face (PanelFace)

Statement Libsmoldyn Python Notes

front PFfront front
back PFback back
N/A PFnone none internal use only
both PFboth both for model creation by user

Panel shape (PanelShape)

Statement Libsmoldyn Python Notes

rect PSrect rect rectangle
tri PStri tri triangle
sph PSsph sph sphere
cyl PScyl cyl cylinder
hemi PShemi hemi hemisphere
disk PSdisk disk disk
all PSall all for model creation by user
N/A PSnone none internal use only

Libsmoldyn error code (ErrorCode)

Statement Libsmoldyn Python Notes

N/A ECok ok value 0
N/A ECnotify notify value -1
N/A ECwarning warning value -2
N/A ECnonexist nonexist value -3
N/A ECall all value -4
N/A ECmissing missing value -5
N/A ECbounds bounds value -6
N/A ECsyntax syntax value -7
N/A ECerror error value -8
N/A ECmemory memory value -9

164

20.2. Miscellaneous

N/A ECbug bug value -10
N/A ECsame same value -11
N/A ECwildcard wildcard value -12

20.2. Miscellaneous

GetVersion

C/C++: double smolGetVersion(void)

Python: smoldyn.version(); smoldyn. version ; S.getVersion()
Returns the Smoldyn version. The C/C++ and low-level Python options just return the base
version number, while the other versions return a more complete version string.

20.3. Errors

SetLogging

C/C++: void smolSetLogging(const char *logfile,void

(*logFunction)(simptr,int,const char*,...))

Python: N/A
This function sets the file for output logging (diagnostics, warnings, etc., but not simulation
data output) and/or the logging callback function. The callback function is called whenever
any output is made so that it can be handled in some way other than simply displaying it
to the output file. Smoldyn has two copies of these pieces of information, of which one is
in the simulation data structure and the other is in global variables; this function only sets
the global variables. Enter both logfile and logFunction as NULL to clear the values, and
otherwise entering either value as NULL will cause it to be ignored.

SetThrowing

C/C++: void smolSetThrowing(int corethreshold,int libthreshold) Python: N/A
Sets error throwing threshold values. Both values are ignored because throwing is somehow
not compatible with static linking.

SetError

C/C++: void smolSetError(const char *errorfunction, enum ErrorCode

errorcode, const char *errorstring)

C/C++: void smolSetErrorNT(const char *errorfunction, enum ErrorCode

errorcode, const char *errorstring)

Python: N/A
These functions are probably not useful for most users. Sets the Libsmoldyn error code to
errorcode, error function to errorfunction, and error string to errorstring. The sole
exception is if errorcode is ECsame then this does nothing and simply returns. Back to it’s
normal operation, this also either sets or clears the Libsmoldyn warning code, as appropriate.
If errorstring is entered as NULL, this clears the current error string, and similarly for
errorfunction. For the regular version without the “NT”, if the library is being run in debug
mode, then this function prints the notification, warning, or error out to stderr. It would also

165

20. C/C++ and Python APIs

ideally throw exceptions if the error code is more severe than the LibThrowThreshold value,
but this throwing doesn’t work at present because throwing exceptions to the host code is
incompatible with static linking.

The “NT” version is the “no throw” version, which is the same as the regular version but
doesn’t display messages to stderr and doesn’t throw exceptions. In general, library functions
should call smolSetError for errors caught by that function itself, and smolSetErrorNT for
errors caught by subroutines of that function, so that each error only leads to a single call of
smolSetError.

GetError

C/C++: enum ErrorCode smolGetError(char *errorfunction, char *errorstring,

int clearerror)

Python: N/A
Returns the current LibSmoldyn error code directly, returns the function where the error
occurred in errorfunction if it is not NULL, and returns the error string in errorstring

if it is not NULL. Set clearerror to 1 to clear the error and 0 to leave any error condition
unchanged.

ClearError

C/C++: void smolClearError(void)

Python: N/A
Clears any error condition.

SetDebugMode

C/C++: void smolSetDebugMode(int debugmode)

Python: S.setDebugMode(int debugmode)

Enter debugmode as 1 to enable debugging and 0 to disable debugging. When debug mode
is turned on, all errors are displayed to stderr, as are all cleared errors. By turning on debug
mode, you can often avoid checking for errors with additional code and you also typically
don’t need to call smolGetError.

ErrorCodeToString

C/C++: char* smolErrorCodeToString(enum ErrorCode erc, char *string)

Python: string = S.errorCodeToString(S.ErrorCode erc)

Returns a string both directly and in string that corresponds to the error code in erc. For
example, if erc is ECmemory, this returns the string “memory”. The Python version doesn’t
have a string input or output parameter, but simply returns the string.

20.4. Sim structure

NewSim, Simulation

C/C++: simptr smolNewSim(int dim, double *lowbounds, double *highbounds)

Python: sim = smoldyn.Simulation(low = List[float], high = List[float],

166

20.4. Sim structure

boundary type = string, quit at end = bool, log level = int)
Creates and returns a new sim structure for C and a new Simulation object for Python.
The structure is initialized for a dim dimensional system that has boundaries defined by the
points lowbounds and highbounds. Boundaries are transmitting for the C version (modify
them with smolSetBoundaryType). Returns NULL upon failure. For the Python version, the
dimensionality is inferred from the vector sizes. The default boundary is reflecting (use "r"

for reflecting, "p" for periodic, "t" for transmitting, or "a" for absorbing; you can also have
different boundary conditions for different sides). Enter quit at end as either true or false.
Also, log level describes what level of importance output should be sent to the display,
where 1 is verbose, 2 is standard, 3 is warnings and above, 4 is warnings and above, and 5 is
critical information only.

UpdateSim

Python: N/A
C/C++: enum ErrorCode smolUpdateSim(simptr sim)

Updates the simulation structure. This calculates all simulation parameters from physical
parameters, sorts lists, and generally does everything required to make a simulation ready to
run. It may be called multiple times.

RunTimeStep

C/C++: enum ErrorCode smolRunTimeStep(simptr sim)

Python: sim.runTimeStep(); S.Simulation.runTimeStep(sim)

Runs one time step of the simulation. Returns an error if the simulation terminates
unexpectedly during this time step. This function does not support graphical output, but
always runs in non-graphics mode.

RunSim

C/C++: enum ErrorCode smolRunSim(simptr sim)

Python: sim.run(stop=float, dt=float, start=float, display=bool, overwrite=bool,
accuracy=int, log level=int, quit at end=bool); sim.runSim();
smoldyn.Simulation.runSim(sim)

Runs the simulation until it terminates. Returns an error if the simulation terminates
unexpectedly during this time step or a warning if it terminates normally.

The Python version allows inputs of the start time, stop time, and time step, along with
whether the simulation details should be displayed to the standard output before the
simulation runs, whether output files should be overwritten, the simulation accuracy level
(10 is for maximum accuracy), the level of output logging (2 is the default), and whether the
simulation should quit at the end. Note that the display parameter does not have anything
to do with graphical output; set that with setGraphicsParams instead.

RunSimUntil

C/C++: enum ErrorCode smolRunSimUntil(simptr sim, double breaktime)

Python: sim.runUntil(t, dt); ErrorCode smoldyn.Simulation.runSimUntil(float

breaktime)

167

20. C/C++ and Python APIs

Runs the simulation either until it terminates or until the simulation time equals or exceeds
breaktime.

FreeSim

C/C++: enum ErrorCode smolFreeSim(simptr sim)

Python: ErrorCode freeSim()

Frees the simulation data structure.

DisplaySim

C/C++: enum ErrorCode smolDisplaySim(simptr sim)

Python: sim.displaySim(); smoldyn.Simulation.displaySim(sim);
S.Simulation.displaySim(sim)

Displays all relevant information about the simulation system to stdout.

20.5. Read configuration file

PrepareSimFromFile

C/C++: simptr smolPrepareSimFromFile(char *filepath, char *filename, char

*flags)

Python: S.prepareSimFromFile(str filename, str flags)

Reads the Smoldyn configuration file that is at filepath and has file name filename, sets
it up, and outputs simulation diagnostics to stdout. Returns the sim structure, or NULL if
an error occurred. flags are the command line flags that are entered for normal Smoldyn
use. Either or both of filepath and flags can be sent in as NULL if there is nothing to
report. After this function runs successfully, it should be possible to call smolRunSim or
smolRunTimeStep. This function is available in Python but is not useful because it returns
a simstruct object rather than a Simulation object, and it’s not possible to convert from the
former to the latter.

LoadSimFromFile

C/C++: enum ErrorCode smolLoadSimFromFile(char *filepath, char *filename,

simptr *simpointer, char *flags)

Python: smoldyn.Simulation(str filename,str flags);
smoldyn.Simulation.fromFile(str filename,str flags);
S.Simulation.loadSimFromFile(str filename, str flags)

Loads part or all of a sim structure from the file that is at filepath and has file name
filename. Send in simpointer as a pointer to sim, where sim may be an existing simulation
structure that this function will append or NULL if it is to be created by this function. flags
are the command line flags that are entered for normal Smoldyn use. Either or both of
filepath and flags can be sent in as NULL if there is nothing to report. After this function
runs successfully, call smolUpdateSim to calculate simulation parameters.

ReadConfigString

C/C++: enum ErrorCode smolReadConfigString(simptr sim, char *statement, char

168

20.6. Simulation settings

*parameters)

Python: ErrorCode S.Simulation.readConfigString(sim,str statement, str

parameters)

Reads and processes what would normally be a single line of a configuration file. The first
word of the line is the statement name, entered here as statement, while the rest of the line
is entered as parameters. Separate different parameters with spaces. The same parser is
used as for normal Smoldyn configuration files. This function does not make use of block
style input formatting, such as for surface definitions. This means that a new surface needs
to declared with “new surface name” and all subsequent surface definitions need to start
with “surface name”. Analogous rules apply to compartments and port.

20.6. Simulation settings

SetSimFlags

C/C++: enum ErrorCode smolSetSimFlags(simptr sim, const char *flags)

Python: S.Simulation.setSimFlags(sim, str flags)

Sets the simulation flags. Examples are: q is for quiet operation, t is for text-only, and v is
for verbose.

SetSimTimes

C/C++: enum ErrorCode smolSetSimTimes(simptr sim, double timestart, double

timestop, double timestep)

Python: S.Simulation.setSimTimes(sim, float timestart, float timestop, float

timestep)

Sets all of the simulation time parameters to the values entered here. In addition the
simulation “time now” is set to timestart.

SetTimeStart

C/C++: enum ErrorCode smolSetTimeStart(simptr sim, double timestart)

Python: N/A
Sets the simulation starting time.

SetTimeStop

C/C++: enum ErrorCode smolSetTimeStop(simptr sim, double timestop)

Python: N/A
Sets the simulation stopping time.

SetTimeNow

C/C++: enum ErrorCode smolSetTimeNow(simptr sim, double timenow)

Python: S.Simulation.setTimeNow(sim, float timenow)

Sets the simulation current time.

SetTimeStep

169

20. C/C++ and Python APIs

C/C++: enum ErrorCode smolSetTimeStep(simptr sim, double timestep)

Python: N/A
Sets the simulation time step, which must be greater than 0.

SetRandomSeed

C/C++: enum ErrorCode smolSetRandomSeed(simptr sim, double seed)

Python: S.Simulation.setRandomSeed(sim, int seed)

Sets the random number generator seed to seed if seed is at least 0, and sets it to the current
time value if seed is less than 0.

SetAccuracy

C/C++: not supported
Python: N/A
Sets or gets the simulation accuracy.

SetPartitions

C/C++: enum ErrorCode smolSetPartitions(simptr sim, char *method, double

value)

Python: S.Simulation.setPartitions(sim, str method, float value)

Sets the virtual partitions in the simulation volume. Enter method as “molperbox” and then
enter value with the requested number of molecules per partition volume; the default, which
is used if this function is not called at all, is a target of 4 molecules per box. Or, enter method
as “boxsize” and enter value with the requested partition spacing. In this latter case, the
actual partition spacing may be larger or smaller than the requested value in order to fit an
integer number of partitions into each coordinate of the simulation volume.

MoleculePerBox

Python: MoleculePerBox(size: float)

This is only available in Python. I think this should be removed because partitions aren’t
physical objects.

Box, addBox

Python: Box(size: float)

This is only available in Python. I think this should be removed because partitions aren’t
physical objects.

20.7. Molecules

AddSpecies

C/C++: enum ErrorCode smolAddSpecies(simptr sim, char *species, char

*mollist)

Python: sim.addSpecies(name=string, state="soln", color=color,
difc= 0.0, display size = 3, mol list = ""); S.Simulation.addSpecies(sim, str

170

20.7. Molecules

species, str mollist)

Adds a molecular species named species to the system. If you have already created
species lists and want all states of this species to live in a specific list, then enter it in
mollist; otherwise, enter mollist as NULL or an empty string to request default behavior.
In Python, just giving a simple value for a color, display size, or color, e.g. color="green",
display size=4, means that that only applies to solution state. If you want it to apply to
all states then use, for example, color=dict(all="green"), display size=dict(all,4).
The molecule list does not need to be declared beforehand for the user-API Python version,
but does for the low-level API version.

GetSpeciesIndex

C/C++: int smolGetSpeciesIndex(simptr sim, char *species); int

smolGetSpeciesIndexNT(simptr sim, char *species)

Python: S.Simulation.getSpeciesIndex(sim, str species)

Returns the species index that corresponds to the species named species. Upon failure, this
function returns an error code cast as an integer. The “NT” version is identical, but doesn’t
throw exceptions or print errors to stderr.

GetSpeciesName

C/C++: char* smolGetSpeciesName(simptr sim, int speciesindex, char *species)

Python: S.Simulation.getSpeciesName(sim, int speciesindex, str species)

Returns the species name that corresponds to the species index in speciesindex. The name
is returned both in species and directly, where the latter simplifies function use. Upon
failure, this function returns NULL.

GetSpecies

C/C++: int smolGetSpecies(simptr sim, int speciesindex, char *speciesname,

double *difc, double **color, double *displaysize, char **listname)

Send in the species index in speciesindex if known, or the species name in speciesname

if not. This then returns information about the species, including the species name, the
diffusion coefficients for each state, the color for each state, the display size for each state,
and the molecule list name for each state. If you don’t want some of this information, send in
the corresponding parameter as NULL. Otherwise, all pointers sent in need to point to memory
that has been allocated to be large enough to recieve the given data. For example, the color
pointer needs to point to a vector that is MSMAX (equal to 5) large for each of the states, and
each of those points to 4 color channels. Returns the species index number on success or a
library error code otherwise.

SetSpeciesMobility

C/C++: enum ErrorCode smolSetSpeciesMobility(simptr sim, char *species, enum

MolecState state, double difc, double *drift, double *difmatrix)

Python: ErrorCode setSpeciesMobility(str species, MolecState state, float

difc, List[float] drift, List[float] difmatrix)

Python: species.difc
Sets any or all of the mobility coefficients for species species (which may be “all”) and

171

20. C/C++ and Python APIs

state state (which may be MSall). difc is the isotropic diffusion coefficient, drift is the
drift vector, and difmatrix is the square of the anisotropic diffusion matrix (see the User’s
manual). To not set coefficients, enter a negative number in difc and/or enter a NULL pointer
in the other inputs, respectively.

The last version shown can also be used to get the diffusion coefficient for a species.

AddMolList

C/C++: int smolAddMolList(simptr sim, char *mollist)

Python: int addMolList(str mollist)

Adds a new molecule list, named mollist, to the system.

GetMolListIndex

C/C++: int smolGetMolListIndex(simptr sim, char *mollist)

C/C++: int smolGetMolListIndexNT(simptr sim, char *mollist)

Python: int getMolListIndex(str mollist)

Returns the list index that corresponds to the list named mollist. The “NT” version is
identical but doesn’t throw exceptions or print errors to the stderr output.

GetMolListName

C/C++: char* smolGetMolListName(simptr sim, int mollistindex, char *mollist)

Python: str getMolListName(int mollistindex, str mollist)

Returns the molecule list name that corresponds to the molecule list with index
mollistindex. The name is returned both in mollist and directly. On error, this function
NULL.

SetMolList

C/C++: enum ErrorCode smolSetMolList(simptr sim, char *species, enum

MolecState state, char *mollist)

Python: ErrorCode setMolList(str species, MolecState state, str mollist)

Python: species.mol list

Sets the molecule list for species species (which may be “all”) and state state (which may
be MSall) to molecule list mollist.

The last version can either set or retrieve the molecule list.

SetMaxMolecules

C/C++: smolSetMaxMolecules(simptr sim, int maxmolecules)

Python: setMaxMolecules(int maxmolecules)

Sets the maximum number of molecules that can simultaneously exist in a system to
maxmolecules. At present, this function needs to be called for a simulation to run, although
it will become optional once dynamic molecule memory allocation has been written.

AddSolutionMolecules

C/C++: enum ErrorCode smolAddSolutionMolecules(simptr sim, char *species,

172

20.7. Molecules

int number, double *lowposition, double *highposition)

Python: ErrorCode addSolutionMolecules(str species, int number, List[float]

lowposition, List[float] highposition)

Python: species.addToSolution(mol: float, highpos: List[float] = [], lowpos:

List[float] = [])

Adds number solution state molecules of species species to the system. They are randomly
distributed within the box that has its opposite corners defined by lowposition and
highposition. Any or all of these coordinates can equal each other to place the molecules
along a plane or at a point. Enter lowposition and/or highposition as NULL to indicate
that the respective corner is equal to that corner of the entire system volume.

AddCompartmentMolecules

C/C++: enum ErrorCode smolAddCompartmentMolecules(simptr sim, char *species,

int number, char *compartment)

Python: ErrorCode addCompartmentMolecules(str species, int number, str

compartment)

Python: compartment.addMolecules(species,number)
Adds number solution state molecules of species species to the compartment compartment.
Molecules are randomly distributed within the compartment.

AddSurfaceMolecules

C/C++: enum ErrorCode smolAddSurfaceMolecules(simptr sim, int speciesindex,

enum MolecState state, int number, int surface, enum PanelShape panelshape,

int panel, double *position)

Python: ErrorCode addSurfaceMolecules(int speciesindex, MolecState state, int

number, int surface, PanelShape panelshape, int panel, List[float] position)

Python: surface.addMolecules((species, state), N=number, pos=position)
Adds number molecules of species species and state state to surface(s) in the system. It
is permissible for surface to be “all”, panelshape to be PSall, and/or panel to be “all”.
If you want molecules at a specific position, then you need to enter a specific surface, panel
shape, and panel, and then enter the position in position.

GetMoleculeCount

C/C++: int smolGetMoleculeCount(simptr sim, char *species, enum MolecState

state)

Python: int getMoleculeCount(str species, MolecState state)

Returns the total number of molecules in the system that have species species (“all” is
permitted) and state state (MSall is permitted). Any error is returned as the error code
cast as an integer.

SetMoleculeColor

C/C++: enum ErrorCode smolSetMoleculeStyle(simptr sim, const char *species,

enum MolecState state, double *color)

173

20. C/C++ and Python APIs

SetMoleculeSize

C/C++: enum ErrorCode smolSetMoleculeStyle(simptr sim, const char *species,

enum MolecState state, double size)

SetMoleculeStyle

C/C++: enum ErrorCode smolSetMoleculeStyle(simptr sim, const char *species,

enum MolecState state, double size, double *color)

Python: ErrorCode setMoleculeStyle(str species, MolecState state, float size,

List[float] color)

Python: species.setStyle
Python: species.color
Python: species.size
Sets the graphical display parameters for molecules of species species (“all” is permitted)
and state state (MSall is permitted). Enter size with the drawing size (in pixels if graphics
method is “opengl” and in simulation system length units for better drawing methods) or
with a negative number to not set the size. Enter color with the 3-value color vector or with
NULL to not set the color (or, in Python, a color word).

20.8. Graphics

SetGraphicsParams

C/C++: enum ErrorCode smolSetGraphicsParams(simptr sim, char *method, int

timesteps, double delay)

Python: ErrorCode setGraphicsParams(str method, int timesteps, int delay)

Python: setGraphics(method: str, timestep: int, delay: int = 0)

Sets basic simulation graphics parameters. Enter method as “none” for no graphics (the
default), “opengl” for fast but minimal OpenGL graphics, “opengl good” for improved
OpenGL graphics, “opengl better” for fairly good OpenGL graphics, or as NULL to not set this
parameter currently. Enter timesteps with a positive integer to set the number of simulation
time steps between graphics renderings (1 is the default) or with a negative number to not set
this parameter currently. Enter delay as a non-negative number to set the minimum number
of milliseconds that must elapse between subsequent graphics renderings in order to improve
visualization (0 is the default) or as a negative number to not set this parameter currently.

SetTiffParams

C/C++: enum ErrorCode smolSetTiffParams(simptr sim, int timesteps, char

*tiffname, int lowcount, int highcount)

Python: ErrorCode setTiffParams(int timesteps, str tiffname, int lowcount,

int highcount)

Sets parameters for the automatic collection of TIFF format snapshots of the graphics window.
timesteps is the number of simulation timesteps that should elapse between subsequent
snapshots, tiffname is the root filename of the output TIFF files, lowcount is a number
that is appended to the filename of the first snapshot and which is then incremented for

174

20.8. Graphics

subsequent snapshots, and highcount is the last numbered file that will be collected. Enter
negative numbers for timesteps, lowcount, and/or highcount to not set these parameters,
and enter NULL for tiffname to not set the file name.

SetLightParams

C/C++: enum ErrorCode smolSetLightParams(simptr sim, int lightindex, double

*ambient, double *diffuse, double *specular, double *position)

Python: ErrorCode smolSetLightParams(int lightindex, List[float] ambient,

List[float] diffuse, List[float] specular, List[float] position)

Sets the lighting parameters that are used for the rendering method “opengl better”. Enter
lightindex as -1 for the global ambient light (in which case diffuse, specular, and
position should all be NULL) or as 0 to 8 for one of the 8 light sources. For each light
source, you can specify the 4-value color vector for the light’s ambient, diffuse, and specular
properties (all values should be between 0 and 1). You can also specify the 3-dimensional
position for the light. To not set a property, just enter the respective vector as NULL.

SetBackgroundStyle

C/C++: enum ErrorCode smolSetBackgroundStyle(simptr sim, double *color)

Python: ErrorCode setBackgroundStyle(string color)

Sets the color of the graphics display background. color is a 4-value vector with red, green,
blue, and alpha values (or, in Python, a color word).

SetFrameStyle

C/C++: enum ErrorCode smolSetFrameStyle(simptr sim, double thickness, double

*color)

Python: ErrorCode setFrameStyle(float thickness, string color)

Sets the thickness and the color of the wire frame that outlines the simulation system in the
graphics window. Enter thickness as 0 for no frame, as a positive number for the number
of points in thickness, or as a negative number to not set this parameter. Enter color as a
4-value vector with the frame color, or as NULL to not set it (or, in Python, a color word).

SetGridStyle

C/C++: enum ErrorCode smolSetGridStyle(simptr sim, double thickness, double

*color)

Python: ErrorCode setGridStyle(float thickness, string color)

Sets the thickness and the color of a grid that shows where the partitions are that separate
Smoldyn’s virtual boxes. Enter thickness as 0 for no grid, as a positive number for the
number of points in thickness, or as a negative number to not set this parameter. Enter
color as a 4-value vector with the grid color, or as NULL to not set it (or, in Python, a color
word).

SetTextStyle

C/C++: enum ErrorCode smolSetTextStyle(simptr sim, double *color)

Python: ErrorCode setTextStyle(string color)

175

20. C/C++ and Python APIs

Sets the color of any text that is displayed to the graphics window. color is a 4-value vector
with red, green, blue, and alpha values (or, in Python, a color word).

AddTextDisplay

C/C++: enum ErrorCode smolAddTextDisplay(simptr sim, char *item)

Python: ErrorCode addTextDisplay(string item)

Adds item to the list of things that Smoldyn should display as text to the graphics window.
Currently supported options are “time” and the names of species and, optionally, their states.
For species and states, the graphics window shows the number of molecules.

20.9. Runtime commands

SetOutputPath

C/C++: enum ErrorCode smolSetOutputPath(simptr sim, char *path)

Python: ErrorCode setOutputPath(string path)

Sets the file path for text output files to path.

AddOutputFile

C/C++: enum ErrorCode smolAddOutputFile(simptr sim, char *filename, int

suffix, int append)

Python: ErrorCode addOutputFile(string filename, int suffix, int append)

Declares the file called filename as a file for output by one or more runtime commands.
Note that spaces are not permitted in the file name. If suffix is non-negative, then the file
name is suffixed by this integer, which can be helpful for creating output file stacks. Enter
append as 1 if any current file should simply be appended, or to 0 if any current file should
be overwritten.

AddOutputData

C/C++: enum ErrorCode smolAddOutputData(simptr sim, char *dataname)

Python: ErrorCode addOutputData(string dataname)

Declares the data table called dataname, enabling output into it by one or more runtime
commands. Spaces are not permitted in the data name.

OpenOutputFiles

C/C++: enum ErrorCode smolOpenOutputFiles(simptr sim, int overwrite = 0)

Opens output files for writing. Enter overwrite as 1 if any existing file should be overwritten.
If overwrite is 0 and a file with this name already exists, then Smoldyn asks the user if it
should be overwritten. If the user replies no, then this function ends with an error of ECerror.

AddCommand

C/C++: enum ErrorCode smolAddCommand(simptr sim, char type, double on,

double off, double step, double multiplier, char *commandstring)

Python: ErrorCode addCommand(string type, float on, float off, float step,

176

20.9. Runtime commands

float multiplier, string commandstring)

Adds a run-time command to the simulation, including its timing instructions. This function
should generally be called after smolSetSimTimes to make sure that command times get set
correctly. The following table lists the command type options along with the other parameters
that are used for each type. Parameters that are not required are simply ignored. The
commandstring is the command name followed by any command parameters.

type meaning on off step multiplier

Continuous time queue
b before simulation - - - -
a after simulation - - - -
@ at fixed time time - - -
i fixed intervals time on time off time step -
x exponential intervals time on time off min. time step multiplier

Integer time queue
B before simulation - - - -
A after simulation - - - -
& at fixed iteration iteration - - -
I fixed iteration intervals iter. on iter. off iter. step -
E every time step - - - -
N every n’th time step - - iter. step -

AddCommandFromString

C/C++: enum ErrorCode smolAddCommandFromString(simptr sim, char *string)

Python: ErrorCode addCommandFromString(str string)

Defines a runtime command, including its execution timing parameters, from the string
string. This string should be identical to ones used in configuration files, except that they
do not include the “cmd” statement.

getOutputData

C/C++: enum ErrorCode smolGetOutputData(simptr sim,char *dataname,int

*nrow,int *ncol,char *array,int erase)

Python: vector<vector<double>> getOutputData(str dataname, bool erase)

Returns data that have been recorded by an observation command (e.g. molcount). Send in
the name of the data in dataname and pointers to variables that will receive the data in: nrow,
for the number of rows, ncol, for the number of columns, and array, for the data themselves.
The data are copied over in this function from the original into the array that is returned,
with the result that the data in the array can be modified as desired. The array needs to
be freed by the host code. All values in this data table are doubles, which is appropriate for
some things but not so good for things like species names and molecule states. The array
represents a 2D table as a single vector so to read the item at row i and column j, use
array[i*ncol+j]. Set erase to 1 for the original data to be cleared after it is copied over.

runCommand

C/C++: enum ErrorCode smolRunCommand(simptr sim,const char *commandstring)

177

20. C/C++ and Python APIs

Python: S.Simulation.smolRunCommand(sim, str commandstring)

Runs the specified command one time, immediately. The commandstring should include the
command name and all parameters, but not any timing information.

20.10. Surfaces

Boundaries

Python: Boundaries(low: List[float], high: List[float], types: List[str] =

field(default factory=lambda: ["r"]), dim: field(init=False) = 0)

Python: setBounds()
This functionality is only available in Python. There is a class called Boundaries and a
function called setBounds. They do basically the same thing.

SetBoundaryType

C/C++: enum ErrorCode smolSetBoundaryType(simptr sim, int dimension, int

highside, char type)

Python: ErrorCode setBoundaryType(int dimension, int highside, str type)

Sets the molecule interaction properties for a system boundary that bounds the dimension

axis. Enter dimension as -1 to indicate all dimensions. Set highside to 0 for the lower
boundary, to 1 for the upper boundary, and to -1 for both boundaries. The boundary type is
entered in type as ‘r’ for reflecting, ‘p’ for periodic, ‘a’ for absorbing, or ‘t’ for transmitting.
Note that Smoldyn only observes these properties if no surfaces are declared; otherwise all
boundaries are transmitting regardless of what’s entered here.

AddSurface

C/C++: int smolAddSurface(simptr sim, char *surface)

Python: surface=sim.addSurface(str: surface name, panels = panel list)
Adds a surface called surface or surface name to the system.

GetSurfaceIndex

C/C++: int smolGetSurfaceIndex(simptr sim, char *surface)

C/C++: int smolGetSurfaceIndexNT(simptr sim, char *surface)

Python: int getSurfaceIndex(str surface)

Returns the surface index that corresponds to the surface named surface. The index is
non-negative. On failure, this returns an error code cast as an integer. The “NT” version is
identical but errors aren’t printed to the stderr output and don’t throw exceptions.

GetSurfaceName

C/C++: char* smolGetSurfaceName(simptr sim, int surfaceindex, char *surface)

Python: str getSurfaceName(int surfaceindex, str surface)

Returns the surface name for surface number surfaceindex both directly and in the surface
string. On failure, this returns NULL.

SetSurfaceAction

178

20.10. Surfaces

C/C++: enum ErrorCode smolSetSurfaceAction(simptr sim, char *surface, enum

PanelFace face, char *species, enum MolecState state, enum SrfAction action,

char *newspecies)

Python: ErrorCode setSurfaceAction(str surface, PanelFace face, str species,

MolecState state, SrfAction action)

Python: surface.setAction(face, species: Union[Species, str], action: str,

new spec=None)

Sets the action that should happen when a molecule of species species (may be “all”) and
state state (may be MSall) diffuses into face face (may be PFboth) of surface surface.
The action is set to action. Enter newspecies to the name of a new species if the molecule
should change species, or as either NULL or an empty string if it should not change species.

SetSurfaceRate

C/C++: enum ErrorCode smolSetSurfaceRate(simptr sim, char *surface, char

*species, enum MolecState state, enum MolecState state1, enum MolecState

state2, double rate, char *newspecies, int isinternal)

Python: ErrorCode setSurfaceRate(str surface, str species, MolecState state,

MolecState state1, MolecState state2, float rate, str newspecies, int

isinternal)

Sets the surface interaction rate(s) for surface surface (may be “all”) and species species

(may be “all”) and state state. The transition being considered is from state1 to state2

(this function uses the tri-state format for describing surface interactions, shown below).
The interaction rate is set to rate, which is interpreted as a probability value for internal
use if isinternal is 1 and as a physical interaction coefficient if isinternal is 0. If the
molecule ends up interacting with the surface, it changes to new species newspecies. Enter
newspecies as either NULL or an empty string to indicate that molecules should not change
species upon interactions. The molecule states are most easily understood with the following
table. If the action listed in the table is in italics, then the corresponding combination of
states is not a permitted input.

interaction class tristate format action
state state1 state2

soln soln soln reflect
” ” bsoln transmit

collision from ” ” bound adsorb
solution state ” bsoln soln transmit

” ” bsoln reflect
” ” bound adsorb

” bound soln desorb
action from ” ” bsoln desorb
bound state ” ” bound no change

” ” bound’ flip

bound soln soln reflect
” ” bsoln transmit
” ” bound hop

collision from ” ” bound’ hop
bound state ” bsoln soln transmit

179

20. C/C++ and Python APIs

” ” bsoln reflect
” ” bound hop
” ” bound’ hop

” bound soln desorb
action from ” ” bsoln desorb
bound state ” ” bound no change

” ” bound’ flip

impossible ” bound’ any nonsense

AddPanel

C/C++: int smolAddPanel(simptr sim, char *surface, enum PanelShape

panelshape, char *panel, char *axisstring, double *params)

Python: int addPanel(str surface, PanelShape panelshape, str panel, str

axisstring, List[float] params)

Adds or modifies a panel of shape panelshape of surface surface. axisstring lists any text
parameters for the panel, which in practice is only a single word that gives the orientation of
a rectangle panel (e.g. “+0” or “-y”). params lists the numerical parameters for the panel
location, size, and drawing characteristics. These are exactly the same parameters that are
listed for the “panel” statement in Smoldyn configuration files, with the sole exception that
the first rectangle “parameter” is actually a string that is entered in axisstring. panelname
is an optional parameter for naming the panel; if it is included and is not an empty string, the
panel is named panelname. If this panel name was already used by a panel of the same shape,
then this function overwrites that panel’s data with the new data. If the name was already
used by a panel with a different shape, then this creates an error, and if the name was not
used before, then a new panel is created. To use default panel naming, send in panelname as
either NULL or as an empty string. In the latter case, panelname is returned with the newly
assigned default name.

In Python, each panel shape is a separate class. These classes are:

• Rectangle: corner: List[float], dimensions: List[float], axis: str, name=””

• Triangle: vertices: List[List[float]] = [[]], name=””

• Sphere: center: List[float], radius: float, slices: int, stacks: int, name=””

• Hemisphere: center: List[float], radius: float, vector: List[float], slices: int, stacks: int,
name: str = ””

• Cylinder: start: List[float], end: List[float], radius: float, slices: int, stacks: int,
name=””

• Disk: center: List[float], radius: float, vector: List[float], name=””

GetPanelIndex

C/C++: int smolGetPanelIndex(simptr sim, char *surface, enum PanelShape

*panelshapeptr, char *panel)

C/C++: int smolGetPanelIndexNT(simptr sim, char *surface, enum PanelShape

*panelshapeptr, char *panel)

Python: int getPanelIndex(str surface, PanelShape *panelshapeptr, str panel)

180

20.10. Surfaces

Returns the panel index for the panel called panel on surface surface. If panelshapeptr is
not NULL, this also returns the panel shape in panelshapeptr. On failure, this returns the
error code cast as an integer. The “NT” version is identical but errors aren’t printed to the
stderr output and don’t cause exceptions to be thrown.

GetPanelName

C/C++: char* smolGetPanelName(simptr sim, char *surface, enum PanelShape

panelshape, int panelindex, char *panel)

Python: str getPanelName(str surface, PanelShape panelshape, int panelindex,

str panel)

Returns the name of the panel that is in surface surface, has shape panelshape, and has
index panelindex, both directly and in the string panel. On failure, this returns NULL.

SetPanelJump

C/C++: enum ErrorCode smolSetPanelJump(simptr sim, const char *surface,

const char *panel1, enum PanelFace face1, const char *panel2, enum PanelFace

face2, int isbidirectional)

Python: ErrorCode setPanelJump(str surface, str panel1, PanelFace face1, str

panel2, PanelFace face2, int isbidirectional)

Sets a jumping link between face face1 of panel panel1 and face face2 of panel panel2 of
surface surface. The link goes from panel1 to panel2 if bidirectional is entered as 0 and
goes in both directions if bidirectional is entered as 1. None of the surface, panel, or face
entries is allowed to be “all”. This does not set the actions of any species to “jump”, which
has to be done using the smolSetSurfaceAction function.

AddSurfaceUnboundedEmitter

C/C++: enum ErrorCode smolAddSurfaceUnboundedEmitter(simptr sim, const char

*surface, enum PanelFace face, const char *species, double emitamount,

double *emitposition)

Python: ErrorCode addSurfaceUnboundedEmitter(str surface, PanelFace face, str

species, float emitamount, List[float] emitposition)

Adds information about a point molecular source so that face face of surface surface can
have its absorption properties calculated so that the molecular concentrations will become the
same as they would be if the surface weren’t there at all. The point molecular source emits
molecules of species species, with a rate of emitamount and is at location emitposition.
The emission rate does not need to be in absolute units, but only has to be correct relative
to other unbounded emitters. None of the inputs to this function are allowed to be “all”.

SetSurfaceSimParams

C/C++: enum ErrorCode smolSetSurfaceSimParams(simptr sim, const char

*parameter, double value)

Python: ErrorCode setSurfaceSimParams(str parameter, float value)

Sets the surface simulation parameter named with parameter to value value. The possible
parameters are “epsilon”, “margin”, and “neighbordist”. In all cases, the defaults are nearly
always good, although this function allows them to be modified if desired. Epsilon is the

181

20. C/C++ and Python APIs

maximum distance away from a surface that Smoldyn is allowed to place a surface-bound
molecule. Margin is the distance inside from the edge of a surface panel that Smoldyn will
place surface-bound molecules that hop onto this panel. Neighbor distance is the maximum
distance over which surface-bound molecules are allowed to hop to transition from one panel
to a neighboring panel.

AddPanelNeighbor

C/C++: enum ErrorCode smolAddPanelNeighbor(simptr sim, const char *surface1,

const char *panel1, const char *surface2, const char *panel2, int

reciprocal)

Python: ErrorCode addPanelNeighbor(str surface1, str panel1, str surface2,

str panel2, int reciprocal)

Adds panel panel2 of surface surface2 as a neighbor of panel panel1 or surface surface1,
meaning that surface-bound molecules will be allowed to diffuse from panel1 to panel2.
These are not allowed to be the same panel. Also, “all” values are not permitted. Otherwise,
essentially any possible entries are legitimate. If surface-bound molecules should also be
allowed to diffuse from panel2 to panel1, enter reciprocal as 1; if not, enter reciprocal

as 0.

SetSurfaceStyle

C/C++: enum ErrorCode smolSetSurfaceStyle(simptr sim, const char *surface,

enum PanelFace face, enum DrawMode mode, double thickness, double *color,

int stipplefactor, int stipplepattern, double shininess)

Python: ErrorCode setSurfaceStyle(str surface, PanelFace face, DrawMode mode,

float thickness, List[float] color, int stipplefactor, int stipplepattern,

float shininess)

Python: surface.setStyle(face, drawmode: str, color: T.Color = "",

thickness: float = 1, stipplefactor: int = -1, stipplepattern: int = -1,

shininess: int = -1,)

Sets the graphics output style for face face of surface surface. mode is the drawing mode;
enter it as DMnone to not set this parameter and otherwise enter it as DMno to not draw the
surface, DMvert for vertices, DMedge for edges, or DMface for faces. The thickness parameter
gives the point size or line width for drawing vertices or edges, or can be entered as a negative
number to not set this parameter. color is the 4-value color vector for the surface, or can be
entered as NULL to not set this parameter (or, in Python, a color word). stipplefactor is the
repeat distance for the entire edge stippling pattern, or can be entered as a negative number
to not set it. stipplepattern is the edge stippling pattern, which needs to be between
0 and 0xFFFF, or can be entered as -1 to not set this parameter. And shininess is the
surface shininess, for use with lighting in the “opengl better” graphics display option, or can
be entered as -1 to not set this parameter. The parameters thickness, stipplefactor, and
stipplepattern only apply to edge style drawing modes and ignore any input in the face

entry. The shininess parameter only applies to the face style drawing modes.

182

20.11. Reactions

20.11. Reactions

AddReaction

C/C++: enum ErrorCode smolAddReaction(simptr sim, const char *reaction,

const char *reactant1, enum MolecState rstate1, const char *reactant2, enum

MolecState rstate2, int nproduct, const char **productspecies, enum

MolecState *productstates, double rate)

Python: ErrorCode addReaction(str reaction, str reactant1, MolecState

rstate1, str reactant2, MolecState rstate2, int nproduct, List[str]

productspecies, List[MolecState] productstates, float rate)

Python: Reaction(subs: List[Species], prds: List[Species], kf, kb=0.0)

Adds reaction named reaction to the system. This reaction can have up to two reactants,
whose species are listed in reactant1 and reactant2 and whose states are listed in rstate1

and rstate2. If the reaction has fewer than two reactants, set either or both of reactant1

and reactant2 to either NULL or an empty string. State the number of reaction products in
nproduct, list their species in productspecies, and list their states in productstates. To
set the reaction rate, enter it in rate; otherwise, enter rate as a negative number.

GetReactionIndex
C/C++: int smolGetReactionIndex(simptr sim, int *orderptr, char *reaction)

C/C++: int smolGetReactionIndexNT(simptr sim, int *orderptr, char *reaction)

Python: int getReactionIndex(List[int] orderptr, str reaction)

Returns the index and order for the reaction that is named reaction. If the order is known,
send in orderptr pointing to this value. If it is not known, send in orderptr equal to either
NULL or pointing to a negative number; in this case, it will be returned pointing to the reaction
order, if the reaction was found. On failure, this returns the error code, cast as an integer.
The “NT” version is identical but errors don’t get displayed to the stderr output or cause
exceptions to be thrown.

GetReactionName

C/C++: char* smolGetReactionName(simptr sim, int order, int reactionindex,

char *reaction)

Python: str getReactionName(int order, int reactionindex, str reaction)

Returns the name of the reaction that has reaction order order and index reactionindex in
the string reaction. Also returns the result directly. Returns NULL if an error arises.

SetReactionRate

C/C++: enum ErrorCode smolSetReactionRate(simptr sim, int order, char

*reaction, double rate, int isinternal)

Python: ErrorCode setReactionRate(int order, str reaction, float rate, int

isinternal)

Set the reaction rate to rate. If this value is to be interpreted as an internal reaction rate
parameter, meaning the production rate for zeroth order reactions, the reaction probability
for first order reactions, or the binding radius for second order reactions, then set isinternal
to 1. Rather than calling this function at all, it’s usually easier to use the rate parameter of
the smolAddReaction function, although that doesn’t cope with internal rate values. As a

183

20. C/C++ and Python APIs

new feature in version 2.70, set isinternal to 2 to set the reaction probability for bimolecular
reactions.

SetReactionRegion

C/C++: enum ErrorCode smolSetReactionRegion(simptr sim, const char

*reaction, const char *compartment, const char *surface)

Python: ErrorCode setReactionRegion(str reaction, str compartment, str

surface)

Limits the spatial region where a reaction can take place to the compartment compartment

and/or the surface surface. To not set one of these limits, enter compartment and/or
surface as NULL. To remove a previously set limit, enter compartment and/or surface as
the empty string, “”.

SetReactionIntersurface

C/C++: enum ErrorCode smolSetReactionIntersurface(simptr sim, const char

*reaction, int *rulelist)

Set the intersurface reaction rules for the bimolecular reaction called reaction. Intersurface
reactions are reactions between two surface-bound molecules that are on two different surfaces.
If rulelist is NULL, then this returns the reaction to the default state, which is that
intersurface reactions are not allowed for this reaction. Otherwise, rulelist should have
one entry for each product. If the entry is 1, then that product is placed on the surface
with the first reactant; if it is 2, then that product is placed on the surface with the second
reactant. If a reaction has no products, then create a single element in rulelist equal to 0
to indicate that intersurface reactions are permitted.

SetReactionProducts

C/C++: enum ErrorCode smolSetReactionProducts(simptr sim, const char

*reaction, enum RevParam method, double parameter, const char *product,

double *position)

Python: ErrorCode setReactionProducts(str reaction, RevParam method, float

parameter, str product, List[float] position)

Sets the reaction product parameters for reaction reaction. At a minimum, the method

reversible parameter is required. Most of these methods require a single parameter, entered
in parameter. A few methods also require a product, in product and the relative position of
this product in position.

method parameter product position

RPnone - - -
RPirrev - - -
RPconfspread - - -
RPbounce σu - -
RPpgem φ - -
RPpgemmax φmax - -
RPpgemmaxw φmax - -
RPratio σu/σb - -
RPunbindrad σu - -

184

20.12. Compartments

RPpgem2 φ - -
RPpgemmax2 φmax - -
RPratio2 σu/σb - -
RPoffset - product number relative position
RPfixed - product number relative position

If method is RPbounce, then a negative number for the parameter indicates default bounce
behavior, which is that molecules are separated by an amount that is equal to their previous
overlap.

20.12. Compartments

AddCompartment

C/C++: int smolAddCompartment(simptr sim, char *compartment)

Python: int addCompartment(str compartment)

Python: compart=sim.addCompartment(name=name, surface=surface, point=vector)
Adds a compartment called compartment to the system.

GetCompartmentIndex

C/C++: int smolGetCompartmentIndex(simptr sim, char *compartment)

C/C++: int smolGetCompartmentIndexNT(simptr sim, char *compartment)

Python: int getCompartmentIndex(str compartment)

Returns the index of the compartment named compartment. On failure, this returns an error
code cast as an integer. The “NT” version is identical but errors aren’t printed to the stderr
output or cause exceptions to be thrown.

GetCompartmentName

C/C++: char* smolGetCompartmentName(simptr sim, int compartmentindex, char

*compartment)

Python: str getCompartmentName(int compartmentindex, str compartment)

Returns the name of the compartment that has index compartmentindex both directly and
in the string compartment. Returns NULL if an error arises.

AddCompartmentSurface

C/C++: enum ErrorCode smolAddCompartmentSurface(simptr sim, char

*compartment, char *surface)

Python: ErrorCode addCompartmentSurface(str compartment, str surface)

Adds surface surface as one of the bounding surfaces of compartment compartment.

AddCompartmentPoint

C/C++: enum ErrorCode smolAddCompartmentPoint(simptr sim, char *compartment,

double *point)

Python: ErrorCode addCompartmentPoint(str compartment, List[float] point)

Adds point as one of the interior-defining points of compartment compartment.

185

20. C/C++ and Python APIs

AddCompartmentLogic

C/C++: enum ErrorCode smolAddCompartmentLogic(simptr sim, char *compartment,

enum CmptLogic logic, char *compartment2)

Python: ErrorCode addCompartmentLogic(str compartment, CmptLogic logic, str

compartment2)

Modifies the current definition of compartment compartment using a logical rule specified in
logic and the definition of compartment2.

20.13. Ports

AddPort

C/C++: enum ErrorCode smolAddPort(simptr sim, const char *port, const char

*surface, enum PanelFace face)

Python: ErrorCode addPort(str port, str surface, PanelFace face)

Python: Port(name: str, surface: Union[Surface, str], panel: str)

Adds a port to the simulation. The port will be named port and will port at the face face
of surface surface.

GetPortIndex

C/C++: int smolGetPortIndex(simptr sim, const char *port)

C/C++: int smolGetPortIndexNT(simptr sim, const char *port)

Python: int getPortIndex(str port)

Returns the index of the port named port. The “NT” version is identical but errors don’t
get displayed to the stderr output or cause exceptions to be thrown.

GetPortName

C/C++: char* smolGetPortName(simptr sim, int portindex, char *port)

Python: str getPortName(int portindex, str port)

Returns the name of the port with index portindex, both directly and in port.

AddPortMolecules

C/C++: enum ErrorCode smolAddPortMolecules(simptr sim, const char *port, int

nmolec, const char *species, double **positions)

Python: ErrorCode addPortMolecules(str port, int nmolec, str species,

List[float] positions)

Adds nmolec molecules to Smoldyn’s import buffer of port port. These molecules will all
have species species and state MSsoln. Enter positions as NULL to have the molecules
positioned randomly over the porting surface and as an nmolec length list of position vectors
to have them located at those specific initial positions. These initial positions should be close
to the porting surface, and on the Smoldyn system side of it.

GetPortMolecules

C/C++: int smolGetPortMolecules(simptr sim, const char *port, const char

186

20.14. Lattices

*species, enum MolecState state, int remove)

Python: int getPortMolecules(str port, str species, MolecState state, int

remove)

Returns the number of molecules that are in Smoldyn’s export buffer of port port. Enter
species with the species of the molecules that should be retrieved, or “all” for all species.
Enter state with the states of the molecules that should be retrieved, or MSall for all states.
Enter remove with 1 to remove molecules from the export buffer after they are retrieved or
with 0 to leave them in the buffer. If an error arises, this returns the error code cast as an
integer.

20.14. Lattices

AddLattice

C/C++: enum ErrorCode smolAddLattice(simptr sim,const char *lattice,const

double *min,const double *max,const double *dx,const char *btype)

Python: ErrorCode AddLattice(str lattice,List[float] min,List[float]

max,List[float] dx,str btype)

Adds a lattice to the simulation for hybrid operation. The lattice is named lattice and
extends from min to max, with lattice spacing dx. The boundary types are given with btype,
which is a string of either ‘r’ characters for reflective boundary or ‘p’ characters for periodic
boundary, with one character for each dimension and the dimensions listed in order (e.g.
“rrp” is reflective on the x and y axes and periodic on the z axis).

GetLatticeIndex

C/C++: int smolGetLatticeIndex(simptr sim,const char *lattice)

C/C++: int smolGetLatticeIndexNT(simptr sim,const char *lattice)

Python: int GetLatticeIndex(str lattice)

Returns the index of the lattice named lattice. The “NT” version is identical but errors
don’t get displayed to the stderr output or cause exceptions to be thrown.

GetLatticeName

C/C++: char *smolGetLatticeName(simptr sim,int latticeindex,char *lattice)

Python: str getLatticeName(int latticeindex, str lattice)

Returns the name of the lattice with index latticeindex, both directly and in lattice.

AddLatticeMolecules

C/C++: enum ErrorCode smolAddLatticeMolecules(simptr sim,const char

*lattice, const char *species,int number,double *lowposition,double

*highposition)

Python: ErrorCode AddLatticeMolecules(str lattice, str species, int number,

List[float] lowposition, List[float] highposition)

Adds number molecules of species species to the lattice named lattice, randomly positioned
over the volume extending from lowposition to highposition. These molecules will all have
state MSsoln.

187

20. C/C++ and Python APIs

AddLatticePort

C/C++: enum ErrorCode smolAddLatticePort(simptr sim, const char *lattice,

const char *port)

Python: ErrorCode AddLatticePort(str lattice, str port)

Connects port port with lattice lattice, so that molecules can transition across this port
between the particle-based simulation region and the lattice-based simulation region.

AddLatticeSpecies

C/C++: enum ErrorCode smolAddLatticeSpecies(simptr sim,const char *lattice,

const char *species)

Python: ErrorCode AddLatticeSpecies(str lattice, str species)

Not all particle-based Smoldyn species are necessarily listed in a lattice portion of space, so
use this function to add species to the lattice region of space. Clearly, the lattice is lattice

and the species being added is species.

AddLatticeReaction

C/C++: enum ErrorCode smolAddLatticeReaction(simptr sim,const char *lattice,

const char *reaction, const int move)

Python: ErrorCode AddLatticeReaction(str lattice, str reaction, int move)

Not all particle-based Smoldyn reactions are necessarily listed in a lattice portion of space, so
use this function to add reactions to the lattice region of space. Clearly, the lattice is lattice
and the reaction being added is reaction.

188

21. Copyright and citation

If you use Smoldyn to a significant extent, then I would appreciate citations to the research papers
that describe the program, as appropriate. These papers are:

• Andrews, Steven S. and Dennis Bray “Stochastic simulation of chemical reactions with spatial
resolution and single molecule detail” Phys. Biol. 1:137-151, 2004.

• Andrews, Steven S. “Accurate particle-based simulation of adsorption, desorption, and partial
transmission” Phys. Biol. 6:046015, 2009.

• Andrews, Steven S., Nathan J. Addy, Roger Brent, and Adam P. Arkin “Detailed simulations
of cell biology with Smoldyn 2.1” PLoS Comp. Biol. 6:e1000705, 2010.

• Andrews, Steven S. “Spatial and stochastic cellular modeling with the Smoldyn simulator”
Methods for Molecular Biology, 804:519-542, 2012.

• Robinson, Martin, Steven S. Andrews, and Radek Erban, “Multiscale reaction-diffusion
simulations with Smoldyn” Bioinformatics 31:2406-2408, 2015.

• Andrews, Steven. S. “Smoldyn: particle-based simulation with rule-based modeling, improved
molecular interaction and a library interface” Bioinformatics 33:710, 2017.

• Andrews, Steven .S., “Rule-based modeling using wildcards in the Smoldyn simulator”
Methods in Mol. Biol. 1945:179-202, 2019

Nearly all of the core Smoldyn program was written by myself (Steve Andrews). Exceptions
include the following. (1) Smoldyn includes few short routines copied from Numerical Recipes
in C (Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1988), which are
acknowledged where appropriate. (2) Martin Robinson wrote the NextSubVolume code and parts
of the smollattice.c file, which integrates that code with Smoldyn. (3) The BioNetGen code, which
is only integrated loosely with Smoldyn, was written by Michael Blinov, Jim Faeder, Bill Hlavacek
and several others who are listed in the file BioNetGen/CREDITS.txt. (4) Some filament code
was written by Edward Rolls. The compiled version of Smoldyn, the components of the source
code that are not copyrighted by others, and this documentation are copyrighted by myself. It
is distributed under the terms of the Lesser Gnu General Public License (LGPL). No warranty is
made for the performance or suitability of any portion of Smoldyn.

I expect to maintain a working copy of the program indefinitely. The download site for Smoldyn is
http://www.smoldyn.org, where the program may be obtained for free. If improvements are made
to the code or bugs are fixed, then I would appreciate a copy of the modified source code. If you
find any bugs in the code, please let me know! My e-mail address is steven.s.andrews@gmail.com.

Following are the text of the LGPL and the GPL.

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

189

21. Copyright and citation

Copyright ©2007 Free Software Foundation, Inc. http://fsf.org/. Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License,
supplemented by the additional permissions listed below.

0. Additional Definitions. As used herein, ”this License” refers to version 3 of the GNU Lesser General Public License, and the ”GNU GPL”
refers to version 3 of the GNU General Public License. ”The Library” refers to a covered work governed by this License, other than an Application
or a Combined Work as defined below. An ”Application” is any work that makes use of an interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the
Library. A ”Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the ”Linked Version”. The ”Minimal Corresponding Source” for a Combined Work means
the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version. The ”Corresponding Application Code” for a Combined Work means the object code
and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application,
but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by
section 3 of the GNU GPL.

2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be
supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of
the modified version: a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply
the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or b) under the GNU GPL, with
none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a
header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material
is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines
in length), you do both of the following: a) Give prominent notice with each copy of the object code that the Library is used in it and that the
Library and its use are covered by this License. b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification
of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of
the following: a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are
covered by this License. b) Accompany the Combined Work with a copy of the GNU GPL and this license document. c) For a Combined Work that
displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the
user to the copies of the GNU GPL and this license document. d) Do one of the following: 0) Convey the Minimal Corresponding Source under the
terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink
the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the
GNU GPL for conveying Corresponding Source. 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is
one that (a) uses at run time a copy of the Library already present on the user’s computer system, and (b) will operate properly with a modified
version of the Library that is interface-compatible with the Linked Version. e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and
execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked
Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.)

5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other
library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if
you do both of the following: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other
library facilities, conveyed under the terms of this License. b) Give prominent notice with the combined library that part of it is a work based on
the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the
GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a certain
numbered version of the GNU Lesser General Public License ”or any later version” applies to it, you have the option of following the terms and
conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does
not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License
ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the
GNU Lesser General Public License shall apply, that proxy’s public statement of acceptance of any version is permanent authorization for you to
choose that version for the Library.

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright ©2007 Free Software Foundation, Inc. http://fsf.org/. Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble. The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software
and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License
is intended to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way
by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know
you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of
others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms
that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know
their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or modify it. For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed,
so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install
or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which
is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such
problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict
development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a
free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions. “This License” refers to version 3 of the GNU General Public License. “Copyright” also means copyright-like laws that apply to

other kinds of works, such as semiconductor masks. “The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations. To “modify” a work means to copy from or adapt all or
part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified
version” of the earlier work or a work “based on” the earlier work. A “covered work” means either the unmodified Program or a work based

190

http://fsf.org/
http://fsf.org/

on the Program. To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable
for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some countries other activities as well. To “convey” a work
means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network,
with no transfer of a copy, is not conveying. An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a
convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for
the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of
this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code. The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any
non-source form of a work. A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or,
in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The
“System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging
a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component,
or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this
context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable
work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The “Corresponding Source” for a work in object
code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including
scripts to control those activities. However, it does not include the work’s System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes
interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts
of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding
Source. The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided
the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights
of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make
modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License
in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively
on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their
relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed;
section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws
prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and
you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users, your or third parties’
legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies. You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and
any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program,
in the form of source code under the terms of section 4, provided that you also meet all of these conditions: (a) The work must carry prominent
notices stating that you modified it, and giving a relevant date. (b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”. (c) You
must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply,
along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. (d) If the
work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not
display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: (a) Convey the object code
in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange. (b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer
support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software
in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at
no charge. (c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative
is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. (d)
Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source
in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or
a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long
as needed to satisfy these requirements. (e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion
of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the
object code work. A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for
personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. “Installation Information”
for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an
object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in
which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the
transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example,
the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided,

191

21. Copyright and citation

in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code
form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms. “Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of
its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to
the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey
a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added
by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License,
for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with
terms: (a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or (b) Requiring preservation
of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways
as different from the original version; or (d) Limiting the use for publicity purposes of names of licensors or authors of the material; or (e) Declining
to grant rights under trademark law for use of some trade names, trademarks, or service marks; or (f) Requiring indemnification of licensors and
authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are
considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating
that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a
further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that
license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord
with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or
stated as exceptions; the above requirements apply either way.

8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to
propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt
of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you
under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not
require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third
parties with this License. An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or
subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work the party’s predecessor in interest had or could give under
the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has
it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may
not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling,
offering for sale, or importing the Program or any portion of it.

11. Patents. A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based.
The work thus licensed is called the contributor’s “contributor version”. A contributor’s “essential patent claims” are all patent claims owned or
controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License,
of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the
following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as
an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to
make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent
license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the
requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that,
but for the patent license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would infringe
one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction
or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it. A patent license is “discriminatory” if it does not include
within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under
which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products
or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March
2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise
be available to you under applicable patent law.

12. No Surrender of Others’ Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only
way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to
convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License
“or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you
may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of
the GNU General Public License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that

192

version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed
on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

193

22. Acknowlegements

Prior to my starting Smoldyn, I attended an M-Cell workshop taught by Joel Stiles and Tom
Bartoll, where I learned several of the concepts that became incorporated in the program. I started
writing Smoldyn while I was a post-doc in Dennis Bray’s laboratory at the University of Cambridge
and funded by NIGMS grant GM64713. Further additions occurred during subsequent positions:
a post-doc in Adam Arkin’s laboratory at the Lawrence Berkeley National Laboratory (funded by
the Genomes to Life Project of the US Department of Energy and an NSF post-doctoral fellowship
in biological informatics), a visiting scientist position in Upi Bhalla’s laboratory at the National
Centre for Biological Research, in Bangalore (funded by the Computer Research Laboratories,
Pune, India), a research fellow position at the Molecular Sciences Institute (funded by grants from
the NIH and the MITRE corporation that were awarded to Roger Brent), a staff scientist position
in Roger Brent’s laboratory at the Fred Hutchinson Cancer Research Center (funded by MITRE
contracts and NIH grants to Roger Brent), a visiting scientist position at the Newton Institute
at the University of Cambridge (funded by a Simons fellowship), an adjunct professor position at
Seattle University (no research funding), and a programmer position in Herbert Sauro’s laboratory
at the University of Washington.

Several people have been instrumental to Smoldyn’s development. Karen Lipkow and her students
(University of Cambridge) have been dedicated users who have suggested numerous improvements.
Nathan Addy (Molecular Sciences Institute) developed code for an AutoTools build system, a
pthread parallelization, and LibMoleculizer rule-based modeling, all of which were worthwhile
attempts but none are part of the current code. James Schaff and other members of the Virtual
Cell team (University of Connecticut Health Center) added Smoldyn to Virtual Cell. Martin
Robinson (Oxford University) developed hybrid simulation with lattice-based support. Roshan
D’Souza and his student Denis Gladkov parallelized Smoldyn to run on GPUs and, independently,
Lorenzo Dematté also parallelized Smoldyn to run on GPUs; both versions were good proofs of
principle but have not proven useful or been maintained. Dilawar Singh (National Centre for
Biological Sciences and then on his own) developed Smoldyn’s Python bindings and improved code
and documentation distribution.

195

	Getting Started
	Introduction
	Installing Smoldyn
	Getting Started
	Conclusions

	Smoldyn Components
	The Configuration File
	Runtime flags
	Configuration file syntax
	Variables and formulas
	Statements about the configuration file
	Text substitution macros
	Running multiple simulations using scripts
	Summary

	Space and time
	Space
	Time
	Summary of statements that define space and time
	Technical discussion of time steps

	Molecules
	About molecules
	Diffusion
	Drift
	Molecule lists
	Statements about molecules
	Wildcards
	Species groups

	Graphics
	Graphics display
	Drawing the system
	Colors
	Text display to the graphics window
	TIFF files and movies
	Summary of basic graphics statements
	Better graphics

	Runtime commands
	Command basics
	Output format and files
	Specific commands
	Summary of statements about commands

	Surfaces
	Surface basics
	Defining surfaces
	Defining surface panels
	Jumping surfaces
	Membrane-bound molecules
	Smoldyn bugs
	Statements about surfaces
	Rates of surface interactions
	Simulating effective unbounded diffusion

	Reactions
	Reaction basics
	Defining reactions
	Statements about reactions
	Reactions with a block format
	Zeroth order reactions
	Unimolecular reactions
	Bimolecular reactions
	Reactions with identical reactants
	Diffusion-limited reactions
	Reversible reactions
	Multi-step reactions
	Reaction networks
	Conformational spread reactions
	Excluded volume reactions
	Binding and unbinding radii
	Bimolecular reactions and surfaces

	Compartments
	Compartment basics
	Defining compartments
	Compartments and efficiency
	Statements about compartments

	Simulation settings
	Simulation settings basics
	Random number seed
	Virtual boxes
	Surface-bound molecule settings
	Statements for simulation settings

	Ports
	Port basics
	Defining ports
	Statements about ports
	Porting rate

	Rule-based modeling with BioNetGen
	Rule-based modeling basics
	Writing rules in BNGL
	Writing the Smoldyn file to read the rules or generated network
	Creating species groups in BioNetGen
	Statements for rule-based modeling
	A ligand-receptor-messenger system in BioNetGen
	Network expansion with monomer modifications
	Network expansion with surface-bound states
	Short names, diffusion coefficients, and graphical parameters
	Surface-molecule interactions

	Filaments
	Filament heirarchy
	Defining filaments

	Hybrid simulation
	Hybrid simulation basics
	Defining lattices
	Lattice output
	Statements about lattices

	Python and C/C++ interfaces
	Installing
	Current limitations
	Python API example
	User and low-level Python APIs
	Creating new simulations
	Callback functions
	Use with C/C++

	Reference
	Math operations and functions
	Quick function guide
	Statements
	Statements about the configuration file
	Statements about variables
	Statements about space and time
	Statements about molecules
	Statements about graphics
	Statements about run-time commands
	Statements about surfaces
	Statements about compartments
	Statements about reactions
	Statements about ports
	Statements for rule-based modeling with BioNetGen
	Statements about filaments
	Statements about lattices
	Statements for simulation settings

	Runtime commands
	Simulation control commands
	File manipulation commands
	Conditional commands
	System observation commands
	System manipulation commands

	C/C++ and Python APIs
	Enumerations
	Miscellaneous
	Errors
	Sim structure
	Read configuration file
	Simulation settings
	Molecules
	Graphics
	Runtime commands
	Surfaces
	Reactions
	Compartments
	Ports
	Lattices

	Copyright and citation
	Acknowlegements

